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Welcome to the GDRE workshop !

The organisers of the GDRE are delighted to welcome all participants to the workshop
being held in the week 23rd to 27th June 2014.

As you will have seen, this is the eighth meeting of our successful research network.
Welcome back friends and colleagues who have attended previous meetings, and
especial welcome to new participants of the GDRE. As in previous years, the venue has
been carefully chosen so that delegates can get away from the usual distractions of life
and focus on science in a convivial and stimulating environment. We hope you enjoy this
year's venue, Gregynog Hall, which is renowned for its beautiful location, its elegant
buildings, its interesting history, and its excellent chef !

Thank you to the participants who have submitted abstracts for a full programme of
presentations, covering a wide range of topics within the interests of the GDRE
community. Thank you also to all the researchers who have chosen to come to this
workshop, to participate in the discussions and in continuing to support the important
collaborations between French and UK researchers, and between applied
mathematicians and engineers.

Many thanks to all who have contributed in the organisation of the conference, including
Beatrice Desoudin (University of Bordeaux), Jenny Gradwell (University of Manchester),
Rachael Evans (Gregynog Hall), and Richard Challis (University of Nottingham and
Imperial College).

Please let us or Gregynog staff know if there is anything that you need.

We wish you a very happy and successful week.

The GDRE steering committee:

Marc Deschamps (University of Bordeaux — 12M)
Alain Leger (University of Marseille)

David Abrahams (University of Manchester)
Mike Lowe (Imperial College London)
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Introduction to the European Research Network (GDRE)

Scope: Experiments, applied mathematics, numerics, and physical acoustics applied
to Non-Destructive Evaluation in the fields of power generation, oil and gas

engineering, civil infrastructure, aeronautics, automotive engineering and medicine

A CNRS research network Groupe de Recherche (GDR 2501) was started in France in
2002, and was joined by researchers in the UK in 2008. The network linked groups of
academics and researchers in Ultrasonic Wave Phenomena with each other, and with
industrial research centres and companies. The teams involved focused particularly on
the theoretical end of the research spectrum, and include mathematicians, physicists

and engineers, with applications to Non-Destructive Evaluation (NDE)..

The GDR was succeeded in 2011 by a new Network, which is now a European
Research Network (GDRE) entitted Wave Propagation in Complex Media for
Quantitative and Non Destructive Evaluation. In a similar manner to the GDR, this new
network aims to give opportunities for interactions between researchers through informal

meetings, workshops and colloquia, alternately in France and in the UK.

The research topics have evolved progressively and are now the following :

- scattering by thin layers and bonding

- material properties and metamaterials

- inverse problems and imaging

- material and contact nonlinearities in acoustics

- stratified and composite media, multidiffusion and structural noise
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Gregynog Hall

The GDRE meeting in June 2014 is being held in Gregynog Hall, in Wales.

Gregynog (pronounced "gregg-gun-og") is a large country mansion in the village of
Tregynon, 4 miles (6 km) northwest of Newtown in the old county of Montgomeryshire,
now Powys, in mid Wales. There has been a settlement on the site since the twelfth
century. From the fifteenth to the nineteenth centuries it was the home of the Blayney
and Hanbury-Tracy families. In 1960 it was transferred to the University of Wales as a
conference and study centre by Margaret Davies, granddaughter of the nineteenth
century industrial magnate and philanthropist, David Davies 'Top Sawyer' of Llandinam.

The original mansion was rebuilt in the 1840s by Charles Hanbury-Tracy, 1st Baron
Sudeley. Its concrete cladding, designed to replicate the black-and-white timber-framed
architecture of Montgomeryshire farmhouses, is among the earliest examples of
concrete use in building in the modern era. The Sudeleys were also pioneers of the use
of concrete in the building of new cottages and farmhouses on the Gregynog estate, and
many Cadw-listed examples can still be seen in Tregynon and the surrounding
countryside. At its largest, the Gregynog estate was over 18,000 acres (73 km?) in
extent, but the estate was broken up in 1913, leaving the mansion with 750 acres (3
km?) of farms, woodlands and formal gardens. The sunken garden and arboretum are of
particular note.

Gregynog was bought by Margaret and her elder sister Gwendoline Davies in 1920 with
the intention of establishing a centre of excellence for the arts, crafts and music which
would enrich the lives of the people of Wales in the aftermath of the World War One. It
became famous for music, fine printing and for the sisters' art collections which they
bequeathed to the nation. These can now be seen in the Davies Galleries of the
National Museum of Wales, Cardiff. Theirs was one of the most important British
collections of French Impressionist and Post-Impressionist painting acquired before
1920. Their advisor Hugh Blaker was the younger brother of their governess Jane
Blaker. The French collection was only one aspect of their interests — it hung at
Gregynog alongside Old Masters, prints by Direr, Rembrandt and Whistler, Chinese
and Islamic ceramics, contemporary hand-made furniture commissioned by the sisters,
Welsh vernacular furniture as well as contemporary ceramics and crafts. Seen as a
whole, the sisters' collections are a tribute to the multiplicity and Catholicism of their
tastes.
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The Gregynog Music Festival, Wales’s oldest surviving classical music festival, was
established in 1933 by the Davies sisters, with the advice of their friend and advisor, Sir
Henry Walford Davies (later Master of the King's Music). Many famous names are
associated with the Gregynog Festivals, including Gustav Holst, Ralph Vaughan
Williams, Edward Elgar and Sir Adrian Boult. The Festival is still held at Gregynog every
June. In more recent years, leading international artistes have performed at Gregynog,
including Benjamin Britten and Peter Pears. The sisters also established the Gregynog
Press, which still exists under the name of Gwasg Gregynog, and is famous for its
limited edition hand-printed books with fine bindings and exquisite wood-engraved
illustrations

Since Margaret Davies’s gift of Gregynog to the University of Wales in 1960, the hall has
hosted a wide range of conferences, seminars and summer schools from every
academic discipline, from International Politics to Welsh Literature to Fine Art, from
Geography to Simultaneous Equations. The growing understanding of the ecological
importance of the grounds, especially the ancient woodlands, has led to their
designation in March 2013 as a National Nature Reserve. The training apiary of the
Montgomeryshire Beekeepers Association is also situated in the Gregynog grounds.

(Information from Wikipedia)


marc
Nouveau tampon


Eighth Meeting of the GDR in Gregynog
23rd to 27th June 2014

Wave Propagation in complex media for quantitative and Non-Destructive Evaluation

Scientific Program

Monday, June 23rd 2014 - Morning

9:00

9:30

10:30

11:00

11:30

12:00

12:30

Welcome

Dubus B. and Granger C., Physical analysis of ultrasonic cavitation bubble structures observed at high
intensity with horn transducers (invited)

Coffee break

Pinfield V., Thermoelastic scattering in concentrated media: the Rayleigh limit for second order
concentration effects

Mattesi V. and Tordeux S., Equivalent source modelling of small heterogeneities in the context of 3D time-
domain wave propagation equation

Luppe F., Conoir J.M. and Pareige P., Dynamic mass density of random arrays of cylinders in an ideal
fluid and the generalized self consistent method

Lunch

Monday, June 23rd 2014 - Afternoon

14:00

14:30

15:00

15:30

16:00

16:30

17:00

19:30

Yaacoubi S., Mckeon P., Yaacoubi W. and Declercq N.F., Steps toward a new technique for improving
guided waves detection sensitivity

Huthwaite P., Thickness mapping by guided wave tomography

Treysséde F. and Laguerre L., Excitation of prestressed multi-wire helical waveguides

Coffee break

Tant K. and Mulholland A., A fractional Fourier transform analysis of the scattering of ultrasonic chirps

Yaacoubi W. and Yaacoubi S., Issues to reduce false calls in guided waves structural health monitoring:
survey and discussion

Nguyen K.L., Treysséde F., Hazard C. and Bonnet-Ben Dhia A.S., Finite element computation of leaky
modes in straight and helical elastic waveguides

Dinner
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Tuesday, June 24th 2014 - Morning

9:00

10:00

10:30

11:00

11:30

12:00

12:30

Habault D., ESAA Project - Toward an active anechoic room (invited)

Parnell W.J., Shearer T. and Abrahams D., Elastic wave scattering in pre-stressed nonlinear
inhomogeneous materials

Coffee break

Fan S., Choi W., Skelton E., Lowe M. and Craster R., The validity of the 3D elastic Kirchhoff
approximation for rough crack scattering signals using a finite element approach

Mora P., Ducasse E. and Deschamps M., Elastodynamic response of an embedded layered anisotropic
plate to a transient localized source

Kamta Djakou A., Darmon M. and Potel C., The Uniform Theory of Diffraction (UTD) for elastic wave
scattering from a half-plane

Lunch

Tuesday, June 24th 2014 - Afternoon

14:00

14:30

15:00

15:30

16:00

16:30

17:00

19:30

Carta G., Brun M. and Movchan A., Wave propagation and localised modes in structures with diffuse
cracks

Joyce D., Abrahams D. and Parnell W.J., The higher order integral equation method of homogenization:
antiplane elasticity

Hernando Quintanilla F., Lowe M. and Craster R., Spectral Methods: An alternative to root-finding
routines for finding dispersion curves of anisotropic homogeneous media

Coffee break

Haslinger S., Flexural waves in structured elastic plates - trapped modes, transmission resonances and
Elasto-Dynamically Inhibited Transmission (EDIT)

Sargent C., Trapped modes in two dimensional waveguides

Massacret N., Moysan J., Jeannot J.P., Ploix M.A. and Corneloup G., Development of ultrasonic
propagation simulation for acoustic thermometry in liquid sodium

Welsh Speciality Dinner
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Wednesday, June 25th 2014 - Morning

9:00 Barnwell E., Parnell W.J. and Abrahams D., Tunable elastodynamic band-gaps

9:30 O'Neill J., Selsil O., Mcphedran R.C., Movchan A. and Movchan N., Cloaking of finite inclusions for
flexural waves in thin Kirchhoff plates using active control sources

10:00 Coffee break

10:30 Colquitt D., Brun M., Gei M., Movchan A., Movchan N. and Jones I., Transformation platonics and
cloaking

11:00 Thompson I., Block wave excitation
11:30 Mansoura S.A., Marechal P., Morvan B. and Dubus B., Active control of phononic crystals

12:00 Lunch

Wednesday, June 25th 2014 - Afternoon

14:00 Wwalk in countryside near Gregynog

19:30 Drinks Reception followed by Conference Dinner

Thursday, June 26th 2014 - Morning

9:00 Gunn D., Holyoake S. and Dashwood B., Low frequency ultrasound propagation in layered media
(invited)

10:00 Cunningham L. and Mulholland A., A multi-frequency, model based method for sizing cracks in an elastic
solid

10:30 Coffee break
11:00 Lowe M. and Fan Z., Array imaging of austenitic welds by measuring weld material map

11:30 Li W. and Sharples S., Spatially resolved acoustic spectroscopy: a laser ultrasonic technique for materials
characterisation

12:00 Bai L., Velichko A. and Drinkwater B., Ultrasonic Characterisation of Crack-Like Defects from Scattering
Matrices

12:30 Lunch
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Thursday, June 26th 2014 - Afternoon

14:00 Peake N., The aeroacoustics of the owl (invited)
15:00 Destuynder P. and Favre C., Remarks for non destructive testing in a bi-material based on Love waves
15:30 Coffee break

16:00 Baronian V., Bonnet-Ben Dhia A.S., Fliss S. and Tonnoir A., Exact transparent boundary conditions for
diffraction problems in some anisotropic plates

16:30 Junca S. and Legrand M., Nonsmooth modal analysis of vibratory systems undergoing purely elastic
impacts

17:00 Favrie N., Lombard B. and Payan C., Nonlinear elasticity and slow dynamics: physical and numerical
modeling

19:30 Dinner

Friday, June 27th 2014 - Morning

9:00 Pullen R. and Lawrie J., Reflection and transmission at the junction between two sections of circular
cylindrical shell

9:30 Nigro D. and Abrahams D., Low mach number flow noise from a two-dimensional rough circular cylinder
10:00 Brun M. and Slepyan L., Solution of a moving contact problem of dynamic elasticity

10:30 Coffee break

12:00 Lunch
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Physical analysis of ultrasonic cavitation bubble
structures observed at high intensity with horn
transducers

Bertrand Dubus and Christian Granger

Abstract

To optimise sonochemistry devices and develop scale-up strategies, it is important
to predict how cavitation bubbles are spatially distributed when they are generated
by high intensity ultrasonic transducers. The cavitation field generated by an ultra-
sonic axisymmetrical horn transducer at low frequency (20 kHz) and high acoustic
intensities (1 to 10 W/cm?) is found to self-organize into a conical bubble struc-
ture. This structure is constituted by cavitation bubbles which nucleate at horn sur-
face, move parallel to it and finally leave it along streamers that constitute the
cone. The presentation will describe the experiments and models developed to un-
derstand this nonlinear stochastic, multi-scale and multi-physical problem with
analysis of: 1) the properties of the bubble structure at the microscopic and macro-
scopic levels; 2) the characteristics of the associated acoustic field; 3) the coupling
of bubble and acoustic fields with the driving transducer.

Related references

A. Moussatov, C. Granger, B. Dubus, Cone-like bubble formation in ultrasonic
cavitation field, Ultrasonics Sonochemistry, 10, 191-195, (2003).

C. Campos-Pozuelo, C. Granger, C. Vanhille, A. Moussatov, B. Dubus, Experi-
mental and theoretical investigation of the mean acoustic pressure in the cavita-
tion field, Ultrasonics Sonochemistry 12, 79-84, (2004).

V.N. Skokov, V.P. Koverda, A.V. Reshetnikov, A.V. Vinogradov, I/f fluctuations
under acoustic cavitation of liquids, Physica A 364 (2005) 63-69.

B. Dubus, C. Vanhille, C. Campos-Pozuelo, C. Granger, On the physical origin of
conical bubble structure under ultrasonic horn, Ultrasonics Sonochemistry, 17,
810-818, (2010).

B. Dubus, C. Granger, Energy pumping by cavitation bubble cloud in low-
frequency ultrasonic horn-type devices, Proceedings of Acoustics 2013, New
Delhi, (2013).

Bertrand Dubus, Institut d’Electronique de Microélectronique et de Nanotechnologie, département
ISEN, UMR 8520, 41 boulevard Vauban, 59046 Lille cedex, , bertrand.dubus@isen.fr

Christian Granger Institut d’Electronique de Microélectronique et de Nanotechnologie, départe-
ment ISEN, UMR 8520, 41 boulevard Vauban, 59046 Lille cedex, , christian.granger@isen.fr
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Figure 1. Pictures of the conical bub-
ble structure at 20 kHz
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Thermoelastic scattering in concentrated media:
the Rayleigh limit for second order
concentration effects

Valerie J Pinfield

Abstract Multiple scattering effects for compressional wave propagation in con-
centrated dispersions are considered in the low frequency (Rayleigh) limit. This
paper considers the additional contributions due to thermal “overlap”, in which
thermal waves produced by scattering of the compressional mode at an individual
particle do not completely decay in the region between particles. Results are pre-
sented for the low frequency limit for the scattering coefficients (transition fac-
tors) for incident compressional and thermal waves, and for the dependence of the
resulting speed and attenuation in the low frequency limit.

1 Introduction

Measurements of attenuation of a planar compressional wave propagating through
a dispersion can be used to determine the concentration and/or particle size distri-
bution of the dispersed particles. Whilst the single particle scattering problem for a
spherical particle has a well-established solution, the multiple scattering of the
compressional wave mode has not been well-defined. The most commonly used
multiple scattering model is that of Lloyd and Berry' with similar results by
Fikioris and Waterman?, Waterman and Truell?, and a more recent derivation by
Linton and Martin*. However, these models consider only the multiple scattering
contribution of the compressional mode itself; they neglect the contribution of
thermal and shear waves to the exciting field at any particle. At low frequencies,
the thermal and shear wave decay lengths are sufficiently large for these waves to
reach neighbouring particles at significant amplitude. Scattering at the neighbour-
ing particle, with an incident (exciting) field of all three wave modes, produces
further scattered waves. The effect of the additional thermal and shear contribu-
tions is to reduce the attenuation of a compressional wave propagating through the
dispersion. Comparisons of experimental measurements of attenuation in suspen-
sions and emulsions have confirmed that the compressional wave multiple scatter-
ing models are inaccurate at low frequencies where the thermal or shear wave
overlap condition occurs.

Luppé, Conoir and Norris® have presented a modified multiple scattering mod-
el which includes the contributions of thermal and shear waves which were previ-
ously neglected. In their model, coherent waves of all three wave modes exist in

Valerie J Pinfield, Chemical Engineering Department, Loughborough University, Loughborough,
LE11 3TU, UK, email: v.pinfield@lboro.ac.uk
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the dispersion. The principal result (for applications relating to compressional
mode propagation through dispersions) is the effective wavenumber of the com-
pressional mode. In this paper, the contributions of the thermal multiple scattering
terms are considered, which are of relevance in emulsions at high concentration.

2 Theory

Luppé, Conoir and Norris® present a solution for the effective wavenumber for a
dispersion at low frequency (equation 36 of their paper). The solution is written as
a series in concentration, in which the second order terms include the additional
contributions due to thermal and shear wave overlap. These are expressed as infi-
nite sums over scattering transition factors representing the conversion between
wave modes of all types at a single particle. The focus of this paper is the extra
contributions due to thermal effects.

Previous studies of scattering in emulsions have shown that for liquid in liquid
systems, the zero-order transition factor (Rayleigh partial wave coefficient) is
dominant. This factor incorporates the energy lost from the compressional wave
by conversion into thermal waves. Therefore, the wavenumber equation can be
simplified by considering only the zero order transitions for the incident compres-
sional wave. In this case, the transition factor for conversion from an incident
compressional wave into a thermal wave is relevant. This is combined with the
conversion from an incident thermal wave to produce compressional waves. It is
assumed again, that the zero order will dominate the process. Hence the additional
term in the effective wavenumber for emulsions at low frequency is given by

K> __219* ke ger

A __ rric (1)
K2 (kca) 3krlkd —k3)

A

where subscripts T and C represent thermal and compressional wave modes, k is
the wavenumber of the continuous phase, for each mode, denoted by its subscript,
K is the wavenumber of the compressional mode in the dispersion, is the vol-

ume fraction and a the radius of the particles. The transition factors are defined

such that TOCT is the zero-order transition factor for an incident compressional

wave converting to a thermal wave. It is important to note that the “low frequen-
cy” region requires all wave modes to have a wavelength much larger than the
particle size. This is more restrictive than the common definition of the long wave-
length region, which often only refers to the compressional wavelength.

In order to establish the low frequency limit of this term, the forms of the tran-
sition factors must be established. These take the low frequency limit

European Research Network, Eighth Meeting, Gregynog, 2014. 14
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where pis the density, ) the ratio of specific heat capacities,7 is the thermal
conductivity and O the thermal diffusivity. The thermal factors (temperature/wave

potential) are denoted by I'. Primed variables relate to the dispersed phase, and
unprimed are for the continuous phase.

The final terms in square brackets in each coefficient incorporate the difference
in thermal properties between continuous and dispersed phases. Each reduces to

_Bllocy)

e )

where /3 is the thermal expansivity and C p 1s the heat capacity. This illustrates its

connection with the thermal property difference.

Substituting the low frequency expressions for the scattering coefficients into
the effective wavenumber equation leads to

Nt ) P loc;) 1+ 0likrar)

i r*o” B/ (pC )

&)

To obtain the low frequency limit of speed, the following relationship can be ap-
plied

=—Re| A— (6)

i.e. the fractional change in the speed of compressional wave propagation through
the suspension. The low frequency limit of the real part of equation (5) is negative
and independent of frequency, and therefore there is a small increase in wave
speed due to the additional thermal terms, which is also independent of frequency.
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The additional contribution to attenuation relates to the effective wavenumber
as follows

2
Aa=£21m AK—2 %
2¢ k

and this is expected to be negative i.e. a reduction in attenuation due to thermal
overlap effects. Numerical results for the additional attenuation show that at low
frequency

2
Im| AK— o< —@ )
k2

resulting in an attenuation which is proportional to the square of frequency. How-
ever, this dependence arises from higher order terms in the coefficients than those

included in equations (2) and (3). The leading term in the coefficient TOTC is real

(equation (3)), and therefore further terms of higher orders in frequency must be
retained in order to obtain its imaginary part. It is this part which contributes to the
attenuation component of the effective wavenumber.

8 Conclusion

The effects of thermal contributions to multiple scattering at low frequency result
in an increase in speed of propagation of compressional waves which is independ-
ent of frequency. The attenuation is reduced, the reduction increasing linearly with
frequency.

References

1. P. Lloyd, M. V. Berry, "Wave propagation through an assembly of spheres IV
relations between different multiple scattering theories," Proceedings of the Physi-
cal Society, London 91, 678-688 (1967).

2. J. G. Fikioris, P. C. Waterman, "Multiple scattering of waves II. "hole correc-
tions" in the scalar case," J Math. Phys 5, 1413-1420 (1964).

3. P. C. Waterman, R. Truell, "Multiple scattering of waves," Journal of Mathe-
matical Physics 2, 512-537 (1961).

4. C. M. Linton, P. A. Martin, "Multiple scattering by multiple spheres: A new
proof of the Lloyd- Berry formula for the effective wavenumber," Siam Journal on
Applied Mathematics 66, 1649-1668 (2006).

5. F. Luppé, J. M. Conoir, and A. N. Norris, "Effective wave numbers for ther-
mo-viscoelastic media containing random configurations of spherical scatterers,"
Journal of the Acoustical Society of America 131, 1113-1120 (2012).
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Equivalent source modelling of small
heter ogeneitiesin the context of 3D time-domain
wave propagation equation

Vanessa Mattesi and Sébastien Tordeux

Abstract In the context of time harmonic wave equation, we are interested in the

computation of the scattered field by a small obstacle. The result of a high perfor-
mance direct numerical simulation is compared to an approximate solution derived
by the method of matched asymptotic expansions.

1 Introduction

In the context of acoustic imaging, it is rather difficult to observe heterogeneities
with characteristic length smaller than the wave length emitted by the scanner.
However, it is possible to detect small heterogeneities in homogeneous media by
using high performance computing. In this work, we will propose a way to compute
the field scattered by a small obstacle with low computation burden based on the
matched asymptotic expansions.

Vanessa Mattesi

Projet Magique-3D, INRIA Bordeaux Sud-Ouest, 200 avenue de la vieille Tour, 33405 Talence and
LMA-UMR CNRS 5142, Université de Pau et des Pays de I’Adour, avenue de I'université, 64013
Pau, e-mail: vanessa.mattesi@inria.fr

Sébastien Tordeux

Projet Magique-3D, INRIA Bordeaux Sud-Ouest, 200 avenue de la vieille Tour, 33405 Talence and
LMA-UMR CNRS 5142, Université de Pau et des Pays de I’Adour, avenue de l'universite, 64013
Pau, e-mail: sebastien.tordeux@inria.fr
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2 The considered problem

2.1 Domain definition

Let us consider a small obstadig = €B, equipped with Dirichlet boundary con-
ditions, with B a reference shape amB; = £dB its boundary. The propagation
domainQ; consists of the exterior to the obstaBle: Q, = R3\B£.

2.2 The system of partial differential equations

We denote byf € 2 (R3 X RTr) a source term satisfying : there exisgs> 0 such
that f(x,t) =0, for||x|| < & andt > 0. Let us consider the solution of thé3
time-domain wave equation :

02U,
—(th)fAUS(Xat): f(X,t), XGQEthOa (1)

equipped with the Dirichlet boundary conditiong(x,t) =0, x€ dQ,t>0and
homogeneous initial conditionsl; (x,0) =0, dug(x,0) = 0.
Remark. We have assumed that the wave speed is equal to 1.

3 Matching of asymptotic expansions

The matching of asymptotic expansions [1] is an asymptotic domain decomposition
method with overlapping. It consists in representing the solution with a far-field
expansion far away from the obstacle and a near-field expansion near the obstacle.
These two expansions are matched in a transition zone with the so-called Van Dyke
matching conditions. This approach is equivalent [3] to the corrector method [2].

3.1 The far-field expansion

The far-field expansion is defined on the far-field dom@in= R3\ {0} consisting
of the limit of Q; for € varying to 0. It takes the form of a Taylor series :

Ugs (X,t) = _Z}ui (x,t)e". (2)

The first term of this expansiam : R® — R is the limit of u, for & varying to 0. It
is a regular solution over aRk?® of the time-domain wave equation :
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dZUO

W(x,t)fAuo(x,t): f(x,t), xeR3 t>0, (3)

equipped with the initial conditionsup(x,0) = 0, dup(x,0) =0, x € R3. The
next coefficients; : Q. — R of this expansion are solutions of the homogeneous
time-domain wave equation :

azui
W(x,t)—Aui(x,t):O, XE Qy, t>0,

u(x,0)=0, au(x,0)=0, xe€Q,,

(4)

which are singular in the neighbourhoodwf 0. This power series aims at approx-

imating the solutionu, at fixedx # 0 : Ug(X,t) — Ug (X,t) = Oo(s'“).
’ e—

3.2 The near-field expansion

The near-field domai® consists in the normalization of the original domalp :

~ Q
Q:?5:{(x,Y,Z)eR3:sx,sY,sZeQ£} (5)
The near-field expansion takes the form gﬁ:"gui(x,t)ei, which aims at approx-

imatingUg(X,t) = ug(eX,t) at fixedX € Q. The coefficients of the near field ex-
pansion satisfy the hierarchical Laplace equation :

AU (X,t) = 02Ui_o(X,t), XeQ,t>0, (6)

equipped with the Dirichlet boundary conditiobj(X,t) =0, X ¢& (3(3, where we
have used the conventidh = 0 fori < 0.
3.3 The second order far-field expansion

In the case of a spherical obstadtg,= {X € R®: || X|| < €}, the second order far-
field expansion is given by :

Ug 2(X,t) = Up(X,t) — &

wWithR= /X2 +y2 4+ 22,

up(0,t —R/c) g2 (dtuo(o,t — R/c))

R R (7)
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4 Results

In this section, we present the results of a numerical experiment. We ai@®,in 3
our computational domain B = {X € R3: ||X|| < 1} and the obstacle B with

€ = 0.05. For the direct numerical simulation, the domaiBi8; whereas for the
computation of the far-field expansion, the domain is the whole sy diee source

term consists in a Rickert localized at po8= (0,0.3,0.3).

We compare the second order far-field expansion given in section (3.3) to a di-
rect numerical approximation af; achieved with an Interior Penalty Discontinu-
ous Galerkin Method (IPDG) associated to a second order BGT absorbing boundary
condition and to a local space-time mesh refinement [4]. Numerically, we observe
that at pointA = (0,0.5,0), the relative error defined by :

. Ug (A1) —Ug 2(AL)

7| maxu (A ©

is lower than 6%.

Fig. 1 Comparison between the direct numerical computation: (feft) and its far-field expan-
sion (right)
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1. A. M. Il'in : Matching of asymptotic expansions of solutions of boundary value problems,
American Mathematical Society, 1992.

2. V. Maz'ya, S. Nazarov and B. Plamenevskij : Asymptotic theory of elliptic boundary value
problems in singularly perturbed domaimstkhuser Verlag, Basel . Boston . Berlin, 2000.

3. M. Dauge, S. Tordeux and G. Vial : Self-similar perturbation near a corner : matching versus
multi-scale expansions for a model problem.

4. J. Diaz and M.J. Grote : Energy conserving explicit local time stepping for second-order wave
equationsS AM J. SCI. COMPUT,, vol. 31, No. 3, pp. 1985-2014.

5. S. Tordeux : Méthodes asymptotiques pour la propagation des ondes dans les milieux com-
portant des fentes, These de I'Université de Versailles, 2004.

European Research Network, Eighth Meeting, Gregynog, 2014. 20


marc
Nouveau tampon


Dynamic mass density of random arrays of
cylinders in an ideal fluid and the Generalized
Self Consistent Method

F. Luppé, J. M. Conoir, P. Pareige

Abstract We consider a random array of elastic cylinders in an ideal (host) fluid.
At low concentration of scatterers, the medium may be replaced by a homogene-
ous effective fluid that is characterized by a complex frequency dependent wave
number and a complex frequency dependent mass density. Assuming one of those
two to be known, we are interested in how the Generalized Self Consistent method
may help in the determination of the other one.

1 Different expressions for the effective properties

Three different expressions of the effective wave number and three different ones
of the effective mass density are used in the generalized Self Consistent Method
(GSCM) in order to estimate the sensibility of the latter.

The expressions for the effective wave number K are:
* Kyr, given by Waterman and Truell’s formula, usually agreed to be incorrect at
order 2 of the concentration,
* K,y given by Linton and Martin [2], usually agreed to be correct at order 2 of
the concentration as long as the radius of exclusion defined by Fikioris and Wa-
terman’s hole correction may be neglected,
* K,., which takes into account the radius b of exclusion, and tends to K, as the
latter tends to zero. K,, is given in Ref.[2] as well as in Ref.[5].

The expressions used for the effective mass density p are:
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* psa, defined as the spatial average of the fluid and cylinders densities,

* p,, an expansion of the effective mass density up to first order in concentration
that takes into account the forward and backward form functions of the cylinders,
as given for example by Aristegui and Angel [1],

* p,, an expansion of the effective mass density up to order 2 in concentration that
is equal to p, at first order, as given in Refs.[3 4].

Both densities p, and p, were found from the identification of the reflection coef-
ficient at the plane interface between two fluids with the one at the plane interface
between a fluid and that same fluid with a random array of scatterers within. p,,
however, was shown to depend on the incidence angle on the interface in Ref.[3],
so that its validity remains to be checked. We use its expression for an incidence
angle equal to zero in the GSCM.

2 The Generalized Self Consistent Method

After [5], the GSCM consists in equating the effective wave number K to that, &,
obtained, with the same formula as that used for K, for a random array of cylindri-
cal tubes in the effective fluid. Each tube consists in a cylinder, radius a, sur-

rounded by a cylindrical ring of the ideal fluid, radius g/ \/; . As every formula

for the wave number involves the scattering coefficients of the scatterers, & de-
pends obviously on both K and p , and we investigate its sensitivity to both pa-
rameters. The numerical calculations are done for steel cylinders in water.

Using pg, for the mass density shows that the Linton-Martin formula provides a
better agreement than Ky, between K and & as was demonstrated in Ref.[5] in the
Rayleigh limit.

100 (&K) / K

Figure 1: Relative difference between & and
K for ¢=0.1 and p=ps,. Thick lines : real
parts. Thin lines : imaginary parts. Solid lines 5
: K=K, ,,, dotted lines : K=K;.

Real part
=
I
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Using K, for the wave number shows that both p, and p, provide a better
agreement than pg, between K and &, but we cannot see any difference between
the two mass densities p, and p, in Fig.2.
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Figure 2: Relative difference between & and
K for ¢=0.1 and K=K,,. Thick lines : real 0.
parts. Thin lines : imaginary parts. Solid lines

1 p=p,, dotted lines : p=p;,. .
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In the Rayleigh regime, the modal series that appear in the expressions of £ and
K as well as in p, may be reduced to modes n=0 and n=+1 only, and the effective
mass density may be looked for by solving the GSCM equation K* = &. Assuming

that
Kiv _ 1. 41Lf(o)- 8 g +0(c)
k? p kld® p? kia* "’ 0
2 b
r noc nL oC
—=1+- +—= +0(c’
r, p kia®  p®kja* ( )
with subscript O relating to the host fluid, one finds
n==2i[£(0)+1,+2t)
@

2 2 2|’
= 2[f<0) —28,+2£(0)t,—3t; —41(0)¢, + 41,1, — 4 }
with ¢, the scattering coefficient of order n of the cylinders.
Eq.(2) corresponds to the low frequency approximation of the formula given in
Ref.[4] for p, .
As the frequency increases, however, K;,, has to be replaced with K,,, and the cor-
responding approximation of p, which takes into account the radius b of exclusion,
must be looked for. This is done in section 3.

3 Taking into account the radius of exclusion

Following the same procedure as in Ref.[3], we find the effective mass density p,,,
when taking into account the exclusion radius b.
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Figure 3 shows the difference between taking into account an exclusion radius b
between the cylinders equal to 2.01a along with an exclusion radius between tubes

equal t0 2.01 g/ \/; and neglecting both exclusion radii in the GSCM.

100 (¢-K) / K

Fo.25
1.
Figure 3: Relative difference between & and ¢ o0 é_
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4 Conclusion

The GSCM shows to be much more sensitive to the approximation used for the ef-
fective wave number than for the mass density. Numerics cannot thus prove with
certainty that the second order in concentration we have found for the effective
mass density is correct. It is only after the analytical study of the Rayleigh regime
that we can hope it is correct.
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Steps toward a new technique for improving
Guided Waves detection sensitivity

S. Yaacoubi, P. McKeon, W. K. Yaacoubi, and N. F. Declercq

Abstract
Ultrasonic guided waves (UGW) techniques are increasingly used in Non-
Destructive Testing as well as in Structural Health Monitoring fields. One advan-
tage among others of the said technique is its propagation over long distances. To
reach this, waves should be generated at relatively low frequencies. By increasing
the wavelength, the defect sensitivity of this technique is consequently decreased.
However, detection of early stages of damages is needed to ensure high level
safety. In structures subjected to severe stresses, small defect can lead quickly to a
rupture.
This communication suggests a method for high-sensitivity damage detection.
The method is based on pitch-catch measurements of Lamb waves combined with
a baseline subtraction technique in the frequency—wavenumber domain. Small
amplitude converted modes, generated during the interaction of propagating waves
with damage, can thus be detected with minimal a priori information regarding
their expected location in the frequency—wavenumber plane. This method is ap-
plied in the present communication to a case of notches with varied depth. Finite
element simulations are carried out in the temporal domain to mimic results ob-
tainable in real-world experiments. Two cases are studied, namely when each of
the two pure fundamental modes are incident on a notch. With regard to previous
works using other methods, the developed method has proved a higher level of
sensitivity. To determine the lower limit of sensitivity detection of this method,
simulation was achieved in different cases:

*  High variation of temperature,

» Large variation of random noise,

*  Change in receiver positions

1 Principle and procedure of the method

For the sake of brevity, a brief description is given in this short paper; further de-
tails can be found in the conference presentation. The method is based on: UGW,
pitch-catch arrangement, fixed emitter, one mobile sensor to accomplish the de-
sired scan or many fixed sensors, an algorithm based on 2D-Fourier Transform.
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This method is useful in the context of SHM as well as periodical NDT. The
method is applicable for the inspection/monitoring of zones characterized as being
crucial to structural safety and vulnerable to damage. Whether within the frame-
work of SHM or periodical NDT, the data to be processed should be collected in
two periods (P1 and P2). In the following, the steps are summarized:

1. For period P1
1. Fix one emitter (E) on one side of the zone to be tested/monitored and N

receivers (Ri) on the other side of it. The receivers should be equidis-
tant (distance between 2 successive receivers, Ri and Ri+1 with i =
(1,..,N-1), is constant), and aligned in the direction of propagation;

2. Measure the time domain out-of-plane displacement at the first point
(i=1);

3. Apply a rectangular window in time, which is chosen with regard to the
distance between the emitter E and the receiver Ri to eliminate un-
wanted reflections. This window can be constant when the excited
mode is non-dispersive, since the duration of the wave packet does
not change length as a function of propagated distance.

4. Redo steps 1 and 2 for all receivers (Ri with i = (2,.., N)). The obtained
data can be formed into a matrix (S) having dimensions N*M, where
M is the size of the temporal vector (length of the sampled signal).

5. Pad with zeros if necessary, and apply a 2DFFT to S.

t

I
2DFFT
[ SR l
. 5
AP ;
X
Amplitude
—
Py 2DFFT
i
(B
L F
] '
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[N \ —
[ \\
Emitter

sii_ N
“

Figure 1: Diagram depicting the method based on the frequency-wavenumber domain baseline
subtraction technique.

Il. For period P2, (P2 = Pl + AP), where AP is the time between the two
periods Pl and P2

1. Redo steps 1 to 5 maintaining initial positions from P1
Call an algorithm based on equation below:
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Based on the signal-processing steps, a code within the Matlab programming envi-
ronment was developed. The inputs of this code are the data matrices S1 and S2,
obtained respectively in the periods P1 and P2. This procedure and the code are
schematically illustrated in Figure 1.

2 Robustness study

Some results of the variation of these factors (as in Figure 2 which concerns cor-
ruption of the acquired data by additional noise) will be shown during the presen-

tation.
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Figure 2 : Small amounts of a converted A0 mode detectable even in the presence of relatively
low SNR

As it is well-known today, these parameters, whether environmental or opera-
tional, cause a problem in the baseline subtraction technique and so, compromise
the reliability of SHM techniques. The method developed in the current study has
better resistance than classic methods to these factors effects. Figure 2 shows the
case of noise effect, without any compensation technique.

0.2
» — Average threshold value
A T . —==-Standard deviation
£ A [JDetectable
L 045N \ [__INon-detectable
= \
[=
3
3
o 04
~
£
a
a
= 005
3}
K<}
=z

0
0 5 10 15 20 25

SNR [dB]

Figure 3 : Notch detectability threshold as a function of SNR. Due to the stochastic nature of
noise, the threshold is displayed with standard deviation.
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4 Advantages of the method and conclusions

The baseline subtraction technique has been applied to the frequency-wavenumber
domain in order to increase the detectability of low amplitude modes. Such modes
occur due to mode conversion when an incident wave interacts with damage such
as a crack. Since the conversion coefficient is related to notch depth, detectability
of low amplitude modes is directly related to the lower limit of damage detection.
Through finite element analysis, mode conversion coefficients have been calcu-
lated for notch depths of less than 10% of the total plate thickness. The smallest
notch depth detected has a depth of around 1.5% of the total plate thickness.
Spectral leakage, which occurs as a direct result of the signal being truncated, i.e.
finite, can hide low amplitude converted modes. If a priori assumptions are made
concerning the material properties and thickness of the sample, the location of the
converted mode can be predicted in the 2DFFT. A novel approach takes the dif-
ference between a damaged 2DFFT and a healthy one. This frequency-
wavenumber baseline subtraction method makes limited a priori assumptions, and
makes low amplitude converted modes apparent. Since the detection floor is no
longer determined by spectral leakage, relatively small damage can be detected as
long as the signal-to-noise ratio is not a determining factor.

To conclude, the method has the following advantages:

+ Itimproves damage detectability (detection of smaller defects); it allow
for the detection of damage in early stage;

» Itis applicable in the field of SHM as well as in periodical NDT (data ac-
quired for a “healthy' sample should be saved, since it is the input of
this signal processing technique). The technique is very sensitive to
small evolution in damage size;

»  Experimentally speaking, the method is easy to apply and not exorbitant.
In SHM, the actuators/sensors (which are relatively inexpensive) live
permanently with the structure and the data is automatically saved. In
periodical NDT, a multi-element receiver can be used to save testing
time. Evidently, all acquisitions should be taken with the same envi-
ronmental conditions (temperature, humidity, pressure,...);

* The amount of assumptions made with a priori knowledge concerning
structural characteristics (bulk velocities and geometrical dimen-
sions) is minimal.
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Thickness mapping by guided wave tomography

P. Huthwaite

Abstract Wall thickness mapping is very important for quantifying corrosion within
the petrochemical industry. One approach is guided wave tomography, where Lamb-
type waves, which travel at different speeds depending on the thickness due to dis-
persion, are passed through the region of interest. Wave speed is then reconstructed
by a tomographic inversion approach, and is converted to thickness by the known
dispersion relationship. Here, the accuracy of three approaches to thickness mapping
is evaluated: ray tomography, diffraction tomagraphy, and a hybrid method combin-
ing the strengths of each. It is demonstrated that the hybrid method generates the
best results, but that there is a fundamental resolution limit of around 2A introduced
by the thickness to velocity mapping, since the varying velocity map cannot ac-
curately capture the guided wave scattering that occurs from small scale features.
To achieve better resolution it is therefore necessary to use inversion models which
more accurately capture the guided wave scattering from such features.

1 Introduction

In guided wave tomography, Lamb waves are excited within a plate-like structure
and transmitted through a region of interest. For a plate of constant thickness, the
velocity of the waves is a known function of the frequency-thickness product. This
leads to the common approach used for guided wave tomography: a map of veloc-
ity is produced from measurements, then converted to thickness taking the known
(fixed) frequency and using the relationship above. Despite this technique being
widely used, (e.g. [1, 2]), it is unclear how slow the thickness variation must be for
it to approximate constant thickness and hence be a valid assumption.

P. Huthwaite
Imperial College London, South Kensington, London, UK, SW7 2AZ e-mail:
p.huthwaite @imperial.ac.uk
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The accuracy of the algorithms used to produce the velocity reconstruction is
also important. Three techniques are considered here. Firstly, ray tomography ne-
glects diffraction and fits a velocity field to produce a set of arrival times matching
those extracted from the measured data. Diffraction tomography is an alternative ap-
proach, based on the Born approximation [3]. Finally, we consider HARBUT (the
hybrid algorithm for robust breast ultrasound tomography) [4], which has been de-
veloped to combine the complementary strengths of the previous two algorithms.

2 Theory

Lamb waves are guided elastic waves which travel in infinite plates of constant
thickness. Figures 1(a) and (b) plot the phase velocity and group velocity dispersion
curves respectively as a function of the product of plate thickness and frequency.
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Fig. 1 Lamb waves in a steel plate. (a) gives the phase velocity dispersion curves, and (b) gives
the group velocity.

Based on this, we make the assumption that the guided waves behave in the
same way as they would within an acoustic medium with varying velocity, corre-
sponding to the local frequency-thickness product. The acoustic model then needs
to be inverted to produce a velocity map from acquired measurements. The first
technique considered uses the ray approximation, which neglects diffraction. The
eikonal equation reformulates the wave equation under ray theory, enabling it to be
solved very quickly by an eikonal solver. Inversion then involves iteratively updat-
ing a velocity field until the eikonal solver produces arrival times which fit those
extracted from the measurements. The resolution of this method is typically poor
since the diffraction occurring with small scale defects prevents them from being
detected [5].

Diffraction tomography uses the Born approximation to produce a reconstruc-
tion. The approximation replaces the total field interacting with the defect with the
undisturbed incident field, and therefore assumes that the disturbance caused by the
defect is small. Various approaches exist to determine the velocity field from a given
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set of data based on this, such as the Fourier Diffraction Theorem [3]. Since the field
must not be disturbed significantly, the approach is therefore limited to low contrast,
small scatterers, but since the technique accounts for diffraction it is much higher
resolution than ray tomography.

HARBUT [4] extends diffraction tomography to relax the requirement for weakly
scattering reconstructions under the Born approximation. The approach is to use
ray tomography to produce a low resolution reconstruction. Diffraction tomogra-
phy is then applied on top of this to increase the resolution; the weakly scattering
requirement now only applies to the small difference between the ray tomography
background and the true field, so the approach is valid for a wider range of defects.

3 Defect analysis

A series of axisymmetric Hann-cross-sectioned defects in a 10mm thick plate were
simulated using the finite element package Pogo [6]. The defects had depths from
5% to 60% wall loss, and widths of from 94 down to 0.8, with the width being
defined as the diameter where the defect first deviated from the uniform background
and where A = 37mm is the wavelength for the Ay mode operating at 50kHz which
was used for the simulations. A circular array of diameter 0.36m surrounded the
defects, enabling illuminations and measurements to be made from all directions.

The three algorithms were then used to produce thickness reconstructions. The
accuracy of these was evaluated and is plotted in Fig. 2(a). This figure plots re-
gions as the defect varies in size and depth where the reconstruction has produced
an acceptably accurate reconstruction, taken to be where the maximum thickness
is within 10% of the true thickness and the RMS thickness is within 5%, with per-
centages given as a fraction of the 10mm nominal thickness. It is clear here that ray
tomography only works well for larger defects, while DT is only suitable for small,
shallow defects. HARBUT achieves good results for a large section of the plot, but
seems to show a resolution limit around 2A, marked by the dotted line.

A similar plot is shown in Fig. 2(b), but instead of using the full 3D elastic guided
wave model to generate the test data, an idealised 2D acoustic model is used, where
the varying thickness is replaced by equivalent variations in velocity. Since this set
of data matches the acoustic models used in the inversion algorithms, it should en-
able the performance of the algorithms themselves to be evaluated. The conclusions
for all three algorithms are simular to those outlined above, but now the overall
resolution limit is around A /2, marked, notably below the 24 from before. This is
effectively caused by the inaccuracies in the assumptions made by the thickness-to-
velocity mapping; this assumption is only valid when thickness varies slowly. More
rapid variations (typically of size less than 24) do not produce the same response
from both models, which manifests itself as a resolution loss.
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Fig. 2 Regions where the three algorithms produced reconstructions within 5% RMS of the true
map, and within 10% variation of the peak wall loss. (a) presents results when test data is produced
from a realistic guided wave model; (b) presents results for an idealised acoustic model.

4 Conclusions

This work has compared three different algorithms, ray tomography, diffraction to-
mography and HARBUT, a hybrid algorithm combining the features of the previous
two algorithms. This has confirmed that ray tomography has poor resolution because
it neglects diffraction, while diffraction tomography is restricted by the underlying
Born approximation to weakly scattering defects. HARBUT, by comparison, gener-
ates good reconstructions for the majority of defects.

A fundamental resolution limit of around 24 was shown for guided wave to-
mography when using realistic test data from guided wave models. This is caused
because the acoustic reconstruction algorithms are unable to accurately describe the
complex scattering of the guided waves which occurs when the waves interact with
small defects.
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Excitation of prestressed multi-wire helical
waveguides

Fakien Treyssede, Laurent Laguerre

Abstract Elastic guided waves are of interest for the non-destructive evaluation
(NDE) of cables. Guided waves are multimodal and dispersive. Cables are complex
structures, helical, multi-wired and highly prestressed. This further complicates the
interpretation of measurement. Numerical models are required for understanding
guided wave propagation and optimizing inspection systems. This paper reports on
the modeling of wave propagation inside seven-wire strands, typically encountered
in civil-engineering cables, including complicating effects such as geometry curva-
ture and prestress. Special attention is given to the interwire energy transfer occur-
ring in a seven-wire strand excited by a source localized in a single wire. Numerical
results show how the energy transfer decreases with frequency, which leads to the
discovery of a compressional mode of local type. This mode may have interesting
features for the NDE of cables.

1 Introduction

Understanding wave propagation inside cables is a complicated task due to the
structural complexity in addition to the multimodal and dispersive nature of guided
waves. Cables are generally made of individual helical steel wires that are in contact
and subjected to high tensioning forces. This work focuses on seven-wire strands,
constituted by one central cylindrical wire and six peripheral helical wires, typically
encountered in civil-engineering cables. Numerical tools are required for modeling
wave propagation inside such complex structures. In this work, a semi-analytical
finite element (SAFE) formulation is proposed. The formulation is specifically writ-
ten in a non trivial twisting coordinate system and accounts for the effects of axial
load.
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2 Computation of guided modes

First, we briefly review the twisting SAFE method for the computation of guided
modes in prestressed helical structures [1]. A SAFE approach consists in applying
a time Fourier transform as well as a spatial Fourier transform along the waveguide
axisz before discretizing the cross-sectipqy) by a finite element method. Inside
one finite elemeng, the displacement field is thus expressed as follows:

u(x, Y,z t) = N¥(x,y)use k&) (1)

whereU*® is the nodal displacement vector aNf is the matrix of nodal interpo-
lating functions of the elememt The variational formulation of three-dimensional
elastodynamics yields an eigenvalue problem of the following form:

{K1—w?™M +ik(K;— K1) +K2K3}U =0 2)

In this work, one emphasizes that the equilibrium equations must be rewritten
in a twisting coordinate system, defined by a non zero torsiofor clarity, the
strain-displacement relation written in a twisting system is given by [2]:

d/ox 0 O 000
0 a/dy 0 000
. 0 0 A 001
€= (Lyy+L,0/02)u, with: Ly = ajayajox o |'“2=looo ©
A —T 9/0x 100
T A d/dy 010

whereA = tyd /dx— 1xd /dy. One points out that the expressionsligy andL s do
not depend os, which proves that guided waves truly exist in helical structures [3].

Furthermore, the variational formulation must account for prestress effects and
is augmented by the following additional term, sometimes referred to as geometric
stiffness:

g tr(dodu - 0p- Oou™)dVp (4)
0
where subscripts 0 are used for the prestressed configuratjotienotes Cauchy
prestress. In Eq. (2), each matrice must hence be augmented by a term related to the
above geometric stiffness operator.

The FE mesh of the seven-wire strand cross-section is shown in Fig. la. We
suppose that friction is high enough to prevent interwire slip. Figure 1b shows the
energy velocity dispersion curves of a strand subjected to an axial tensile strain of
0.6%. Although dispersion curves exhibit a complex pattern, the figure particularly
shows an apparent cut-off of the fastest mode (compressiondl{kd) mode)
aroundwa/cs = 0.44, i.e. 86kHz for steel strands of 15.7mm nominal diameter.
This phenomenon, sometimes referred to as 'notch frequency’, coincides with ex-
perimental results of the literature [4, 5]. It actually corresponds to a sudden veering
between two distinct branches [2], denoted &3, 1)a andL (0, 1)b. Without load,
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the notch frguency is centered around 0.36, i.e. 68kHz (results not shown for con-
ciseness). Numerical experiments have shown that the phenomenon responsible for
this frequency shift is indeed the increase of interwire contact area with the axial
load.

Fig. 1: (a) Cress-section FE mesh of a seven-wire strand, (b) normalized energy velocity versus
frequency under 0.6% tensile strain (the arrow indicates the notch frequency).

3 Response under excitation

Now, we are interested in solving the forced response problem, similar to Eq. (2) but
with a non-zero excitatiof (k) at the right hand side. The waveguide response can
be obtained by expanding the solution as a sum of guided modes. Taking advantage
of biorthogonality relations and applying the Cauchy residue theorem, the authors
have shown in Ref. [6] that the SAFE solution as a functiom 5f0 can be written

as:

UnF (km) (5)

U= % Ao gz ith: g = — %
A VR T ARy
The summabn in Eq. (5) is performed over positive-going modEg.denotes the
power flow of themth mode. The above solution neglects the contribution of non-
propagating modes. Viscoelasticity is not considered here.

One considers an excitatidh) normal to the cross-section, distributed over the
cross-section of the central wire (half-sine function vanishing at its boundary) and
concentrated at = 0. One focuses on the transfer of energy from the central wire
to the peripheral ones. The acoustic field of interest to quantify the wave energy is
the power flow. We defing, the ratio of the power flow inside the six peripheral
wires to the power flow of the whole seven-wire strand. Therefore, a gnraans
a weak energy transfer to the peripheral wires and inversely.
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Figure 2a Bowsn as a function of frequency for a loaded strand (0.6% tensile
strain). In the low frequency region, the energy transfer to peripheral wires is high.
This is an expected result since th@, 1)-like mode of a strand has a global be-
havior [2]. Then fromwa/cs = 1, n suddenly drops. This drop is indeed explained
by the excitation of a new compressional-like mode, denotdd(@sl) in Fig. 1b,
whose motion is localized into the central wire. Figure 2b plots the modulus of the
modal coefficientory of propagating modes. The power of the localizé¢D, 1)
mode after its cut-on is clearly greater than the gldl8l 1) mode. This new mode
could be of interest for NDE applications.
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Fig. 2: (a) Enegy transfer ratio, (b) modulus of modal coefficients for a strand subjected to a
0.6% tensile strain
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A Fractional Fourier Transform Analysis of the
Scattering of Ultrasonic Chirps

Katherine Tant and Anthony. Mulholland

Abstract In this paper, a model for the scattering of an ultrasonic chirp in the far-
field is derived in the time-frequency domain. The Fractional Fourier transform
(FrFT) is applied to an inhomogeneous wave equation where the forcing function is
prescribed as a linear chirp, modulated by a Gaussian envelope. Using the assump-
tions central to the Born approximation, an explicit expression for the scattered pres-
sure wave is obtained. This model can be used to demonstrate the enhanced detec-
tion that the use of coded excitation permits and to design optimal chirp parameters
for model-based, defect sizing algorithms.

1 Introduction

The use of coded excitations in signal processing has been shown to improve signal
to noise ratio (SNR) and lessen trade-offs between sample penetration and image
resolution [1] [2]. As the change of frequency with time is inherent to the nature
of chirps, it seems natural to explore these signals within the time-frequency do-
main. This can be achieved through application of the Fractional Fourier transform
(FrFT) [3]. Below, the inhomogeneous wave equation with a Gaussian modulated
linear chirp forcing function has been solved in time-frequency space. An explicit
expression for the resulting scattered wave is then obtained via the Born approxi-
mation [4]. By varying the parameten (the rate at which the frequency increases

in the linear chirp), comparisons can be drawn between chirp excitations and gated
continuous wave excitations.
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2 TheFractional Fourier Transform

A linear chirp which has been modulated with a Gaussian envelope can be written.

2 . .
S(t) =Re [exp(otzl) exp(ir((2fm+ %)tz—&- 2(f — 7_'{5712)0)} . (1)

Here, f is the initial frequencym is the rate of frequency increade,is the centre
of the Gaussian peak amdis its standard deviation. Letting= 2fm+i/mo? and
& = f —ity/mo?, the FrFT of equation (1) in terms af the independent variable,

is [3]
i 2 — R (y _z2

s (U) :exp(m—tlz) V1—icota exp(ln(u (x —tana) +2ué seaa — & tana))
4 ¢¢) /x—cota 1+ xtana

(2)

wherea dictates where in the time frequency domailies. Allowing the Gaussian
modulated linear chirp (equation (1)) to be a spatially independent forcing function,
the inhomogeneous wave equation is given

2
2P0 PP ) = (). ©

From [3], its FrFT can be written

2

(i2m)?u? sir? a pa(x, u) + idrusina cosa% Pa(X,U) 4 cog a% Pa(X,u)

= ?02pa(x,u) +Sa(u).  (4)

3 Solving the nhomogeneous Wave Equation in the
Time-Frequency Domain

To solve equation (4), s@h(x,u) = g(u)h(x) and, using separation of variables, the
following equations can be derived

cog ag’(u) +i4nusina cosag (u) — (4Pu?sifa —b?)gu) =0  (5)

and 02 W
Sa(u
%h(x) + —h(xX) = ——~ = f(u). 6
(9 + ) = oy = FU (6)
Here, we have a variablewhich, whena = 0 andm= 0 (a gated continuous wave
in the time domain), is equal to the circular frequereyHowever, inherent to a
chirp is a continuum of frequencies and so, whmeg: 0, b is not constant but a
continuous variable related to the frequencies contained within the chirp. Due to its
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relationship to the wavenumbéyc will now be denoted . By imposing a radiation
condition, the general chirp-like solution to equation (5) is given by

g(u) = Crexp(u(—imutana — v/—b2se@ a +i2rmtana). (7

Settingh(x) = h'"(x) 4 h%*(x), an expression for the scattered pressure at goint
has been derived

) = S0P [ (iR (e O ) Ry i ) exp(— K- e
%ﬂff)f(u) /Vf exp(—iKx - es)dVy
+ %ﬂfgf(u) /V'l exp(—iKx .- e5)dV4, ®)

wherers is the distance of from the surface of the scatterenat(working in the

far field it is assumedly| > [x|), Vo = 1—po/p1 andyy = 1—Ag/A1, wherepg, p1

are the densities in the host and flaw materials respectivelp@md represent the

bulk moduli.es is the unit vector in the scattered wave direction ¥pdienotes the

flaw volume whilst; is the region which lies between the flaw and reception points.
Applying the central assumption of the Born Approximation (that the host and flaw
materials are similar), the pressure field and its derivatives can be obtained from the
incident wave only [4]. Since this work is based on transmission and reception in
the far field, the spatial component of the incident wave can then be approximated
by a plane waveh™ = exp(iKe - x). Using these assumptions and the relationship

exp(iKrs)

scatt _ .
h>*(y,b) = poA(e:; &) A

(9)

the scattering amplitud&(e; es), with forcing functionf (u) incident in directiorg
and scattered in directiag, can be written

—vo(e-e) /sinKlg —elre) —K|e — eslrecosK g — el
Aees) = —aanas? Yo ( )( (K|e —esre) —K|e — eg|recosK e — g e)>

& —esf?rg Kle —ejlre
| f(u) (sin(Kre) — Krecos@{re)>
Po  Kre K2r2
| % f(u) (Krecosqire) —sin(Kre) — Krscos(Krs) +sin(Rr3)>
Po  Kre K2r2 ’

(10)

where the flaw has been modelled as an ellipsoid dimensions;, a, andaz and
re is the effective flaw radius. Substituting equation (10) into equation (9) and multi-
plying by equation (7), an explicit approximation of the time-frequency domain so-
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lution, pa(x, u), to the waveequation with a Gaussian modulated linear chirp forcing
function, is obtained.

4 Conclusions and Future Work

An analytical framework for assessing the use of chirp excitations by ultrasonic
arrays in the detection and classification of flaws has been derived. At present the
formulation has focussed on the scalar wave equation (shear horizontal waves) and
the Born approximation for the scattering terms, but this could easily be extended
to the more general Navier equations. This framework also permits an analysis of
the effects that the chirp parameters have on the scattering amplitude arising from a
defect as received by the ultrasonic array. In addition, it will also allow the inverse
problem concerned with recovering defect dimensions, when chirp insonification is
used by the arrays, to be implemented.
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Issues to reduce false calls in Guided Waves
Structural Health Monitoring: Survey and
discussion

Weina K. Yaacoubi, and S. Yaacoubi

Abstract

Structural health monitoring (SHM) is an emerging technology, which offers the
possibility to improve early stage damage sensitivity and so, the performance of
mechanical structures. The fact that actuators and sensors leave permanently with
these structures renders its interrogations more frequent than in classic Non-
Destructive Testing. The basic principle of this technology is: the data acquired, at
different periods (or spaces), are used as inputs of algorithms based on baseline
subtractions, and this allows consequently being more sensitive to small defects.
To ensure the desired reliability of this technology, the data (and so the built data-
base) should be acquired in the same conditions such as operational and environ-
mental. However, in real life, temperature, wind, humidity, rain, electronic noise,
loadings, etc. are not stable and change stochastically. Moreover, equipment aging
(sensors, wires-sensors attachments, cables...) influence also the measurements.
This impact significantly this data and generate consequently false-calls. All SHM
techniques including ultrasonic guided waves (UGW) are exposed to this kind of
problem. Many worldwide researchers are aware by these constraints which can
render the promising SHM technology not efficient at all. Signal processing and
statistical tools are developed especially the last decay to overcome (or at least re-
duce the effects of) these serious complications. Works are nowadays numerous.
This communication focuses on UGW technique and presents a deep and concise
survey of most previous works which are applied or can be applied to make it
more reliable. The advantages and limitations of each tool will be discussed.
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Finite element computation of leaky modes in
straight and helical elastic waveguides

K. L. Nguyen, F. Treysse¢de, C. Hazard, A.-S. Bonnet-BenDhia

Abstract Elastic guided waves are of interest for inspecting structures due to their
ability to propagate over long distances. However, waveguides are often embedded
in a large solid domain, considered as unbounded. The waves can attenuate strongly
along the guide axis due to the energy leakage into the surrounding medium, which
reduces the propagating distance. Searching modes with low attenuation becomes
necessary. The goal of this work is to propose a numerical approach to compute
modes in embedded elastic waveguides (straight and helical structures), combining
the so-called semi-analytical finite element method (SAFE) and a perfectly matched
layer (PML) method. The application of this work is the non destructive evaluation
of multi-wire strands, which constitute cables in civil structures.

1 Introduction

For embedded structures, the energy leakage into the surrounding medium yields
wave attenuation along the guide axis, which limits the application of guided wave
technique for non destructive evaluation (NDE). An accurate determination of low
leakage modes becomes necessary to maximize the inspecting range. Analytical
tools have been developed to model simple geometries (plates and cylinders) [1, 2].

For complex geometries, modeling often relies on numerical approaches. A clas-
sical method is the so-called semi-analytical finite element (SAFE) method restrict-
ing the computational domain on the discretized waveguide cross-section. Yet, two
difficulties are encountered for the numerical simulation of embedded waveguides
: the unbounded cross-section and the presence of leaky modes whose amplitudes
grow in transverse directions. To circumvent these difficulties, the SAFE method
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has been combined with other techniques such as absorbing layer [3] and boundary
element methods [4]. An alternative approach proposed in this paper is the perfectly
matched layer (PML) method. A SAFE-PML approach has already been applied to
model embedded solid plate waveguides in two dimensions [5].

The goal of this work is to extend this technique to model three-dimensional
elastic waveguides buried in a solid matrix. First of all, the modeling of embed-
ded straight waveguides is considered. The next step consists in applying the PML
method in transverse twisting coordinates [6] to compute modes in embedded heli-
cal structures.

2 Straight waveguides

A PML applied along the Cartesian transverse directions (X,Y) consists in extend-
ing the elastodynamic formulation into complex coordinates (X (X), ¥ (Y)) to absorb
waves in the surrounding medium: X = [ % (€)dE, ¥ = [y w(E)dE. A change of
variable is then performed to transform the formulation back to real coordinates. In
addition to the PML technique, the SAFE method is applied, which assumes an ¢***
dependence, where £ is the axial wavenumber and Z is the axial direction. The FE
dicretization yields the quadratic eigenvalue problem :

{K| — 0®M+ik(K; — KI) +K’K;3}U =0 (1)

Numerical results are computed for a steel bar in concrete. The eigenspectrum at
a given frequency shows that the PML method not only computes physical modes
(leaky) but also non-intrinsic modes (radiation modes) which depend on PML char-
acteristics and resonate mainly in the PML region. In order to eliminate radiation
modes, a filtering criterion is applied, defined by the ratio of kinetic energy in the
PML over the kinetic energy in the whole domain. As shown in Fig. 1, dispersion
curves of leaky modes are well identified after filtering. Numerical results obtained
by the SAFE-PML method are in agreement with Refs. [3, 4].

3 Helical waveguides

Helical waveguides must be considered in twisting coordinates (x,y,z) defined as :
x=Xcos(1Z)+Ysin(tZ), y=—Xsin(tZ)+Ycos(1Z), z=2 (2)

where T denotes the torsion of the (x,y) plane around the Z-axis.

The twisted PML method transforms twisted transverse coordinates (x,y) into
complex ones (%(x),7(y)). Similarly to the previous section, a twisted SAFE-PML
approach can then be applied.
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3.1 Validation

Since a twisted cylinder remains a cylinder, this test case can be considered to vali-
date the twisted SAFE-PML method.

The comparison between the axial wavenumbers computed in both coordinate
systems (with twist and without) shows that the wavenumbers of compressional and
torsional modes are unchanged while those of flexural modes are translated by +=7m
in the twisting system, where m denotes the circumferential order (details in [6]).

Although the axial wavenumbers are different in twisting and straight coordi-
nates, the physics of cylindrical modes are left unchanged. Figure 1 shows the agree-
ment between the energy velocities in both coordinate systems.
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Fig. 1 Energy velocity for an embedded cylin-  Fig. 2 Attenuation of modes in an embedded
drical bar obtained by SAFE-PML (circles) helical wire (black) and in an embedded cylin-
and twisted SAFE-PML (crosses) methods. drical bar (gray).

3.2 Examples

Two examples of embedded helical waveguides are now considered : a steel helical
wire and a steel seven-wire strand buried in concrete.

Figure 2 compares the axial attenuation of compressional L(0,7) modes in an
embedded helical wire with those of an embedded cylindrical bar. This comparison
concentrates on compressional modes, which have low attenuations and high en-
ergy velocities. Compressional modes are more attenuated in a helical wire than in
a straight one. This difference becomes more significant for high order modes. This
result shows that the curvature of helical wires reduces the wave propagation dis-
tance and can make their NDE more difficult. This phenomenon has been observed
for other kinds of curved waveguides [7].

The dispersion curves of energy velocity for a steel seven-wire strand in con-
crete is given by Fig. 3. The strand consists of one cylindrical bar surrounded by six
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Fig. 4 Attenuation of modes in an embedded
seven-wire strand.

helical wires. Comparing with the results of a free strand [6], the modal behaviour
is strongly modified due to the introduction of the surrounding medium. The wave
attenuation is shown in Fig. 4. F(1,1)* and L(0, 1)’ modes have the lowest atten-
uations in the frequency range [0,1.5] and [1.5,2] respectively, which may be of
interest for NDE. In addition to the attenuation due to the energy leakage, the sur-
rounding medium has the other effect to make helical wires almost in contact, which
further modifies the dispersion curves.
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ESAA Project - Toward an active anechoic room

D. Habault, Ph. Herzog, E. Friot, C. Pinhede

Abstract This is a presentation of some works in active control. Most of them were
conducted by members of the LMA. We will show how these previous works have
led to the project which is called “Active anechoic room” and is now carried out in
the laboratory. The final aim of this project is to develop an active control system in
order to increase sound absorption in the LMA anechoic room at low frequencies.
Indeed, the characteristics of an anechoic room is to reduce the echoes coming from
the walls in a very large frequency range. In the middle and high frequency range,
this is very well achieved by covering the walls with absorbing materials. At very
low frequencies (below 100Hz for example), this is more difficult but the active con-
trol systems are quite efficient at these frequencies and can be used as an additional
tool to improve the acoustic performances of the passive system that is the coating
on the walls. Apart from its practical applications, the study addresses more general
questions related to sound synthesis and representations of sound fields and sources.

1 Introduction

For several tens of years the LMA has been contributing to a large amount of works
on active sound control and the most recent studies concern both active control
and sound synthesis (see [1, 2, 3] for example). The expertise gathered from these
works is now used to carry out a project called “Active anechoic room” described
in the abstract. The practical application of this project is to define and realise an
experimental set-up in order to study acoustics radiation and propagation problems
in a low frequency range and at short distances with a high accuracy. The general
idea is therefore to add an active sound system to the existing passive system in the
anechoic room.

Habault
LMA, CNRS-UPR7051, Aix-Marseille Univ, Ecole Centrale Marseille, 13402 Marseille Cedex
20, France, e-mail: habault@Ima.cnrs-mrs.fr
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2 Some LMA previous works in active control

A choice of three examples of works conducted at LMA is presented. The first one,
the most classical, consists in minimising the sound field inside a volume. The orig-
inal sound field is emitted by a source called primary source located outside the
volume. The sound reduction is achieved by using secondary sources located at the
boundary of the volume. These sources are driven from sound pressure measure-
ments on microphones located inside the volume and by using specific algorithms
such as LMS. It is well-known that this kind of system provides good results at low
frequencies.

The second example is a sound synthesis example. The aim is to create a sound
field with given characteristics in a volume inside a room. The sources are located
on the walls of the room and a set of microphones is located on the boundary of
the volume. A Green’s formula is used to relate the sound pressure measured on the
microphones to the sound pressure at any point in the volume. Then the system con-
sists in driving the sources from measurements on the microphones. An experiment
was carried out in a 2.7x1.7x2 m? room, in the 100-400 Hz frequency band.

In the third example, the aim is to minimise the sound pressure diffracted by an
object in a room (see [1] and Fig. 1). The primary source is a loudspeaker located
in a corner. The goal is that the sound pressure at the exterior microphones should
be as close as possible to the incident pressure, that is the sound pressure that would
exist in the room with no object. The total sound pressure is measured by interior
microphones located around the object. The secondary sources are driven from the
measurements obtained on these interior microphones. An integral equation is used
to relate the total pressure on the exterior microphones to the total pressure on the
interior microphones. The diffracted pressure is deduced from two series of mea-
surements, with and without the object. An experiment was conducted in an ane-
choic room with the geometry shown in Fig. 1 at 280 Hz with an object of volume
1.6x0.9x0.5 m°.

Diffracting object

©00000 o M
microphones
P

60 0 0 o

ptot(M) =
pinc(M) +
pdiff(M)

PR R R R

000000

Exterior microphones Me

* Primary source

Fig.1 - Active control of the sound pressure diffracted by an object
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3 The active anechoic room project

The aim of this project is to minimise the echoes coming from the walls of an ane-
choic room in order to increase the absorption efficiency of the coating (see Fig. 2)
at a low frequency range. The source S is the primary source that we want to char-
acterise accurately. The active control system is based on an array of loudspeakers
located along the walls and driven by using pressure measurements on an array of
microphones P; located around the source. This is somewhat similar to the case of
diffraction by an object described in the previous section. However, here, there is
no direct way to assess the diffracted pressure. Therefore, this problem includes two
steps : 1/ to estimate the diffracted pressure at point M ; 2/ to reduce the level of this
diffracted pressure. Here, we only consider the first step, that is to develop a method
in order to estimate the echoes arriving at point M.

Such a problem is modeled by using integral representations in order to obtain
a relation between the total field measured on the microphones p;, (P;) and the
diffracted field at the observation point M pg;¢(M). At this stage, a monochromatic
source is assumed, with an angular frequency @. By using Green’s formulas, it is
possible to obtain the following representation :

pdlf(M) = (%[ptot])(M) pOllI'M €Q (1)

where the operator .7 is an integral operator over the surface of the array of micro-
phones which represents the exterior boundary of the volume €. It can be shown
that this operator exists and is uniquely defined but cannot be obtained explicitly,
except in very simple cases. It must be remarked that it depends on the point M
and the microphones P; but does not depend on the source. This leads to a two-step
method. A first set of sources is used to identify the operator by minimising the
expression |pgif — € pior|. This is done by using a SVD method. Once a numer-
ical approximation of JZ is obtained, the relation (1) can be used to compute the
diffracted pressure for any other source.

The presentation will show some theoretical and numerical aspects of the study.
From a numerical point of view, the effect of various parameters must be stud-
ied carefully, such as the number and positions of sources and microphones, the
impedance on the walls and the frequency, etc. Because the problem solved is an
inverse, ill-posed problem, the quality of the numerical results tightly depends on
the way the physical characteristics of the problem and the final objective of sound
reduction are taken into account.

4 Two examples of industrial applications

Two kinds of industrial applications of active sound control are finally described.
For the first one, an active control system was designed in order to reduce the sound
levels emitted by an electrical transformer. This system was first realised three years
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Fig. 2 - Active control of the sound pressure in an anechoic room

ago in an area of a Swiss city for the ATQ company and is still in use. The emitted
signals are measured on a continuous time basis at several distances from the trans-
former. The second example is more similar to a sound synthesis experiment. It was
conducted for Thales Alenia Space. The aim was to produce a diffuse sound field in
aroom used to test satellite responses to severe conditions (see Fig. 3). The sources
are loudspeakers located along the walls which are driven at low frequency by an
active control system.

Fig. 3 - Sound synthesis in a satellite testing room
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Elastic wave scattering in pre-stressed nonlinear
inhomogeneo materials

William J. Parnell, Tom Shearer and |. David Abrahams

Abstract The influence of hydrostatic pressure on the scattered elastodynamic field
from a spherical cavity in an almost incompressible neo-Hookean medium is in-
vestigated. Small-on-large theory, coupled with matched asymptotics enables the
scattering coefficients of the shear and compressible waves to be determined. A va-
riety of interesting effects can occur associated with tuning the scattered response
according to the imposed pressure.

1 Introduction

Inhomogeneous media are used extensively in the form of composite materials and
arise naturally in various forms. Many such media are capable of large deformation
and so there is a requirement to understand how linear acoustic or elastic waves
propagate though such media when they are in a pre-stressed state. Predicting such
fields is a non-trivial exercise due to the nonlinear deformations that arise being in-
homogeneous. Wave propagation problems in pre-stressed hyperelastic media are
typically restricted to the case diomogeneous media and homogeneous defor-
mations so that the incremental wave will propagate through a homogeneous but
anisotropic medium. On the other hamehomogeneous deformation leads the in-
cremental wave to propagate in an anisotr@pid inhomogeneous medium.

Before trying to understand the rather difficult multiple inhomogeneity problem,
it would appear prudent to solve canonical problems associated with scattering from
single inhomogeneities in pre-stressed materials. This was done recently for an-
tiplane waves in neo-Hookean materials for two dimensional problems [1] where
the rather surprising result that pre-stress dussmodify the scattered field was
deduced. This led to results associated with elastodynamic cloaking [2], [3], [4].

William J. Parnell e-mail: william.parnell@manchester.ac.uk Tom Sheser e-mail:
tom.shearer@manchester.ac:ukDavid Abrahams e-mail: david.abrahams@manchester.ac.uk
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Mooney-RiMin materials were subsequently studied in [5] and although the scat-
tered fieldis affected by the pre-stress, its effect is still small.

The relative simplicity of the antiplane problem is assisted by the fact that both
the deformation and incremental wave problems are incompressible. The extension
to coupled compressional-shear waves in two or three dimensions is made more
difficult by the requirement to include compressible effects. Here we shall describe
the scattering of shear waves from a spherical cavity in a pre-stressed hyperelastic
material and asymptotically exploit the fact that it is close-to-incompressible.

2 Asymptotic methodology

Consider an unbounded hyperelastic material, residing in which is a spherical cav-
ity Q of radiusA. Subject the medium to a hydrostatic presspisen the far field

so that the cavity deforms radially to a cavity of radaiand an inhomogeneous
deformation is generated within its vicinity. We wish to understand the effect that
this nonlinear pre-stress has on scattering due to an incident incremental linear elas-
tic shear wave. Wavelengths of the compressional and shear wavag, Aseand
wavenumbers arkp, ks such thatkpA < 1 butksA = O(1). This means that the
hyperelastic material is close to incompressible on lengthscal®$A)fso that its
ground state bulk modulus > p, its shear modulus. We consider the inhomo-
geneity and anisotropy to be restricted to a region that is small compared with the
compressional wavelength but of the same order as the shear wavelength, see fig. 1.
As such thénner region close to the cavity (and subject to inhomogeneous strain)
can be treated ascompressible. On the other hand the outer region, far from the
cavity is treated asompressible, homogeneous and isotropic. This enables us to
treat the problem in terms of matched asymptotics, matching the incompressible
inner solution to the outer, scattered field.

Ap

As

outer region
inner region

Fig. 1 Schematic diagram of inner and outer regions

3 Outer problem: scattered field

Pre-stress is confined to the inner region so that Navier's equation governs the dis-
placements in the outer region:
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(A +u)0(0-u) + pD?u+pw?u=0 (1)

whereu is the displacement vectok, and i are the Lamé coefficients and time
harmonic motion of frequencg has been assumed. The incident wave is a plane
shear wave propagating in tkelirection and polarised in thedirection.

When the incident wave impinges upon the cavity both shear and compressional
waves are scattered and the scattered field is decomposge-ass + Ug: with

< (2n+1)i" . < (2n4-2)i"
Uss = n;m(an'v'gln(r) —ibaNgn(r)), Us = n;m

Al 31n(r),

whereap, b, andd, are he scattering coefficients associated with scattered decou-
pled shear waves, coupled shear waves and compressional waves respectively. The
standard vector spherical harmonig, ., N3, - andL 2, are defined in [6]. Explicit
expressions for scattering coefficients in the case of no pre-stress are given in [6].

4 Inner problem: pre-stress and incremental equations

Waves in the inner field are governed by incremental equations, derivedyinalfa
on-large theory and as such a nonlinear elasticity problem is first solved. We de-
termine the fields that arise when hydrostatic pressure is imposed in the far field,
deforming a spherical cavity inside an incompressible neo-Hookean material. As-
sume a deformation of the forlR = R(r),® = 8, ® = ¢ where (R 0, ®) and
(r,0,¢) are spherical polar coordinates in the undeformed and deformed config-
urations respectively. Imposed hydrostatic pressure coupled with incompressibility
yieldsR = (r2 + A% — a%)'/3 wherea is the deformed cavity radius and it transpires
thata = a/Ais defined via

(4a’+1) 5 po
2a4 2 u’ (2)

The incremental equations are div pw?u = 0 where{ = M : (gradi) +ql —
Qgradu whereQ is the known Lagrange multiplier associated with the large defor-
mation andq is its perturbation, which is expanded into spherical harmonics with
unspecified coefficients to be determined. For homogeneous deformitidras
constant coefficients. Here, its only non-zero terms are

3. A3_ 43)4/3
r°’+A°>—a
Mirrr = Mrgro = %IJ’ 3)
2
Moo = Mopgp = Morer = Mogop = Mgopo = (Pra_a)nt @

and the traction free boundary condition is imposed ena.
Separable solutions are posed for the displacement components with the same
6 and ¢ dependency as the case of no pre-stress and unknown functions bé
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determinedrom a set of coupled ODEs. In the inner regeps r < bwhereb > a,

the equations are solved numerically and linked-atb with the solution of incre-
mental equations in > b (the outer extent of the inner region) which are obtained
by removing the inhomogeneity from the ODESs since we are far away from the pre-
stress. The solution associated wlithmogeneity in this region can be augmented,
asymptotically by higher order corrections associated with effects of inhomogene-
ity. These mid-region solutions have the required spherical Bessel function form,
with the exception of the compressible part which has algebraic decay. This is how-
ever sensible since we have assumed incompressibility in the inner problem. Using
Van-Dyke’s matching principle, we match this leading order inner field to the lead-
ing order outer field derived in (2) in order to determine the scattering coefficients.
These have dependence on pre-stress by virtue of matching to the inner problem.

5 Results

As an example of the effect of pre-stress in figure 2 we plot the scattering cross-
section, a measure of the incident energy scattered by the cavity [6] as a function of
the imposed pre-stress for various valuekdg. Note in particular the shifting of

the minimum for each curve as a result of pre-stress.

Ya

0.1} T
-——_

0.01

Fig. 2 The scattering cross-
sectiony, as a function of
P/ for various values of
ksA. The solid line corre-
sponds tdksA = 1, the dashed
line corresponds t&A = 2
and the dotted line corre-
sponds tksA = 0.5.

0.001
3
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The validity of the 3D elastic Kirchhoff approximation
for rough crack scattering signals using a finite element
approach

Fan Shil, Wonjae Choil, Elizabeth Skeltonz, Michael J.S. Lowel,
and Richard Craster”

Abstract

The Kirchhoff approximation to calculate the elastic wave scattering
from 2D rough cracks is examined by a comparison with a 3D finite
element (FE) approach. This approach couples a time domain finite
element solver and a hybrid method to compute the scattering sig-
nals from rough cracks. 2D random rough surface with Gaussian
profiles are used in this paper to study the validity of the Kirchhoff
approximation.  Simulations are run as a function of inci-
dent/scattering angle, roughness, and band width of the input signal.
Both the shape and the peak amplitude of the received signal are
compared using the two different numerical approaches. Certain re-
stricted ranges for the Kirchhoff approximation are found through
the comparison with the FE method.
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Elastodynamic response of an embedded layered
anisotropic plate to a transient localized source

Pierric Mora ¢, Eric Ducasse ” and Marc Deschamps ¢

Abstract We present a method for computationally solving the following prob-
lem: given a general stratified medium and a localized transient source, what is the
elastodynamic field at any finite time ¢ and position (x,y,z). This work is aimed at
modelling composite plates in vacuum, immersed in fluids or embedded in solid
half spaces. A Fourier transform on the two in-plane space variables and a Laplace
transform on the time variable are used. The 3D wave equation is analytically solved
in this dual space. Then, the inverse transformations are performed. Concerning the
Laplace variable, we use the well known Bromwich-Mellin formula, which can be
computed via a fast Fourier transform. This results in the so-called Exponential
Window Method [9, 4, 7]. We illustrate the method with the example of the genera-
tion of the §; Lamb mode of an aluminum plate immersed in water. Depending on
the incidence angle, the group velocity of this mode can be either positive, zero or
negative.

1 Statement of the problem

The wave equation in an anisotropic elastic solid, with a causal source term f, is:

pdpu—(VoVju=f . (1)

The symbol ¢ stands for a bilinear operator and contains the stiffness coeffi-
cients [3]. For the sake of simplicity, the viscoelastic case is not treated. Though,
the method would be exactly the same. Equation (1) holds for each layer, and conti-
nuity of displacement u and normal stress o, connects the distinct regions.
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‘Localized

Source
Layer #1
(upper)

Fig. 1 The medium considered has a finite number nz1 of layers. The first and last ones may be half
spaces. Each layer can be a fluid, a solid, isotropic or anisotropic, and is possibly viscoelastic.

2 Analytical resolution in the dual space (k,z,s)

We apply integral transforms on the two in-plane variables and on the time variable:

x — k: Fourier transform,

t — s: Laplace transform.

In this dual space, (1) is a linear ordinary differential equation on the z variable.
The particular solution physically corresponds to the response of the source in an
infinite space - which can be easily calculated with the Green tensor - while the com-
plementary solution physically corresponds to the field refracted by the interfaces.
The refracted field can be expressed in the basis of the 2x3 body waves, which are
the eigensystem of the Stroh matrix [11, 5]. The continuity conditions on the inter-
faces lead to a ”global matrix”-like linear system [6] on the body waves coefficients.
The determinant of this system never vanishes as long as we set Re(s) > 0.

3 Numerical inverse transforms to the (x,z,7) domain

k — x: standard use of FFT !,
s — t: use of the Bromwich-Mellin formula:

u(t) 1 /7’”“ U (s)
=— t)d 2
(o) =2 [ (20)) ewenas @
which can be computed by a FFT !, the result being multiplicated by exp (v ). The
choice of yin (2) is a numerical compromise. Indeed, for low values, the integration
path can get too close to the singularities (see Fig. 2), the integration over frequen-
cies is truncated too roughly and the temporal signal suffers a severe aliasing. This is

particularly critical for waveguides in vacuum with no damping. On the other hand,
if a high value of v is chosen, the exp (¥ ¢) factor rapidly magnifies a numerical noise
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due to the spectrum truncation of the source term. This compromise is discussed in
Refs. [4, 7]. One should then keep in mind that, according to the needs, any arbitrary
precision can be reached, at the possible price of oversizing the temporal window.

Im(s)
®
]
]
Fig. 2 Integration path in the complex 4
plane for (2). Because of causality and of
the stability of the system, all the func-
tions are holomorph in R’ +1iR. All the
singularities (poles, branch cuts) are in the Re(s)
left part of the complex plane.

4 Example: S| Lamb mode with ¢, > 0,c, =0and ¢, <0

As an illustration we take the example of the S| Lamb mode of an aluminum plate
immersed in water excited by an oblique square transducer sending a narrow band
signal (30 cycles with a gaussian envelope). The transducer size is approximately
40 Ayarer and the incidence angle 6 is chosen to select different behaviors of the
S1 Lamb mode. As a complement to Refs. [1, 2] we display in Fig. 3 the displace-
ment field in the time domain.

5 Conclusions

The Exponential Window Method coupled with a 2D space Fourier approach can
solve the very general 3D case of localized transient sources radiating to multilay-
ered half spaces. The solution can be obtained at any given precision. Therefore,
concerning field calculation, this method is more versatile than a modal approach
which would be fraught with difficulties in obtaining the complex radiating modes
and working with the incomplete modal basis. Furthermore, the computer code can
be highly parallelized, and the calculation speed is far fast enough for being run on
a commercial personal computer.
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Fig. 3 (1) Side view of the setting. (2) Dispersion curves of the plate in vacuum, as a guideline for
chosing the frequency and incidence angle ((a): f=3.0 MHz, 6 = 12.0° (b): f=2.87 MHz, 6 =7.7°
(c): f=3.0 MHz, 6 = 2.6°). In this S| region, the influence of the fluid loading is low [8, 10]. (3)
S1 Lamb mode with (a) positive, (b) zero, (c) negative group velocity. On the left side, the fields
are viewed from the side with time running, on the right side the view is from the top at fixed time.
As aresult of worse impedance matching the time decay of the (a) case is slower.
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The Uniform Theory of Diffraction (UTD) for
elastic wave scattering from a half-plane

Audrey KAMTA DJAKOU, Michel DARMON and Catherine POTEL

Abstract

The scattering of elastic waves from an obstacle is of great interest in ultrasonic
Non Destructive Evaluation (NDE). There exist two main scattering phenomena:
specular reflection and diffraction. The Geometrical Theory of Diffraction (GTD)
is a classical method used for modelling diffraction from canonical scattering ob-
jects. GTD is obtained using asymptotic approximation of the exact solution of a
canonical elastic wave scattering problem. This approximation fails when the sta-
tionary phase point coalesces with a pole of the integrant i.e. for the observation
direction of specular reflection. To relax this drawback, uniform GTD corrections
have been developed in electromagnetism: among them, the Uniform Theory of
Diffraction (UTD) based on the Pauli-Clemmow approximation. The edge dif-
fracted field provided by UTD owns a discontinuity which compensates that of the
geometrical field making the total field spatially uniform. UTD initially developed
in electromagnetism has been established in elastodynamics to deal with the elas-
tic wave scattering problem from a half-plane.

Keywords: elastodynamics, scattering, GTD, UTD, half-plane.
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Wave propagation and localised modes in
structures with diffuse cracks

Giorgio Carta, Michele Brun and Alexander B. Movchan

Abstract We investigate the propagation of elastic waves and localisation phe-
nomena in diffusively damaged solids. First, we show that the eigenfrequencies of
finite elongated solids with equispaced cracks and different lengths lie within the
pass-bands of infinite periodic structures. Then, we present a reduced model, rep-
resented by a beam with elastic connections that simulate the cracked sections.
The rotational and translational stiffnesses of the connections are determined by
means of an asymptotic analysis. We show that the beam model is capable of de-
scribing accurately the dynamic response of the solid in a finite range of frequen-
cies. We also point out that the limits of the pass-bands coincide with the eigen-
frequencies of simple beams with appropriate boundary conditions.

1 Introduction

Cracks and defects in elastic solids generate stop-bands (also known as band-
gaps), which are intervals of frequencies for which waves do not propagate. Band-
gaps also arise when the structure contains discontinuities. Such discontinuities
can be found, for instance, in bridges and pipelines where some cross-sections are
reduced in depth for design purposes.

Static problems concerning elongated solids with transverse cracks, subjected
to either longitudinal or transverse loads, are examined in [3] and [2], respectively.
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In both works, a reduced asymptotic model is introduced to study the condition of
decay for the boundary layer located in proximity of the crack.

Here, we apply the approach presented in [2] to dynamic problems. In particu-
lar, we analyse the propagation of elastic waves in long solids with equispaced
deep cracks. In Sect. 2 we determine numerically the pass-bands and stop-bands of
an infinite strip with periodic cracks; in addition, we compute the eigenfrequencies
of finite strips of different length and we show that they fall inside the pass-bands
of the infinite strip, provided that the associated eigenvectors are not localised. In
Sect. 3 we employ the reduced beam model, which is proven to approximate well
the dynamic behaviour of the strip; moreover, we observe that the limits of the
pass-bands correspond to the eigenfrequencies of simple beams with proper boun-
dary conditions. In Sect. 4 we indicate some practical applications relevant to this
work.

2 Strip model

We consider time-harmonic transverse waves travelling in a two-dimensional elas-
tic strip with equispaced deep cracks. First, we assume that the strip is of infinite
length and consists of a sequence of elementary cells, as that drawn in Fig. 1.
Here, # is the height of the strip, g, is the depth of the cracked section, while / is
both the distance between cracks and the length of the elementary cell.

Figure 1: Elementary cell of a : V :
two-dimensional elastic strip | |
with cracks located at regular : Q1 A : h
intervals of length /. I i

12 12

The pass-bands of the infinite strip are obtained numerically by imposing Flo-
quet-Bloch conditions at the ends of the elementary cell. The pass-bands are
shown in grey colour on the right side of Fig. 2, where w is the radian frequency.

Next, we consider finite strips made of different numbers of elementary cells.
We calculate their eigenfrequencies and eigenmodes by performing finite element
computations. The outcomes are reported in Fig. 2, where the eigenvalues corres-
ponding to propagating modes are indicated by black dots, while those relative to
localised modes are represented by black crosses. Examples of a propagation
mode and of a localised mode are also illustrated in Fig. 2. We point out that all
the eigenfrequencies associated to propagating modes lie within the pass-bands of
the infinite strip.

3 Beam model

The two-dimensional strip can be studied analytically by using a lower-
dimensional model, consisting of a beam with elastic junctions that represent the
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cracked sections. The rotational and translational stiffnesses (per unit thickness)
are derived from an asymptotic analysis [2] and are given by

74 Kbs T Ep2
K, = = (1)
s 4(5-2v)(1+v)
and
= K Tk
K === . : )
s 4(1—v )log(h/pg)
respectively. In the formulae above, s represents the thickness.
A
4500~ . . ° : . .
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3000 N § : . . : : :
> . .
5 Bor - » e S =SS
< La=s S = == === === 2% S -
— = w» o
" 2000}
3 . . . : : :
1500 : . : . : .
1000/ . . . . . . : E
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Figure 2: Eigenfrequencies of finite strips of different length associated to propagating
modes (black dots) and localised modes (black crosses); pass-bands of the infinite strip (grey
lines). These results are obtained by using the finite element software Comsol Multiphysics
(v. 4.3). (Young's modulus E = 200 GPa; Poisson's ratio v = 0.3; mass density o = 7800 kg/m3;
[=2m;h=02m;0,=0.04m.)

We consider an infinite periodic beam. By applying Floquet-Bloch conditions,
we obtain the dispersion curves shown in solid line in Fig. 3a. In this figure, k is
the wavenumber and [ is a frequency parameter expressed by O =
(0AW*I*/E)M(1/4), where A and J are the area and the second moment of inertia of
the beam cross-section. Fig. 3a shows that there is a very good correspondence be-
tween the lower three dispersion curves of the beam and the numerical results of
the strip model, represented by dots. Furthermore, we notice that the limits of the
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pass-bands coincide with the eigenfrequencies of the simple beams sketched in
Fig. 3b.

4n >

12
0 | | 1 ¢ R
0 n/4 /2 3n/4 Fd
kl
(a) (b)

Figure 3: (a) Comparison between the dispersion curves of the infinite periodic beam (solid
lines) and the numerical values relative to the infinite strip (dots) (E = 200 GPa; v = 0.3;
o = 7800 kg/m3 ; h =02 m; o, = 0.04 m); (b) simple beams with different boundary conditions,
whose eigenfrequencies coincide with the limits of the pass-bands in (a).

4 Conclusions

The results of this work can be used to detect damages and defects in structures by
means of non-destructive techniques. Moreover, they can be valuable to design
structures with suitable sections of discontinuity that can filter waves of specific
frequencies.

A more detailed discussion and thorough explanations of this work can be
found in [1], where additional outcomes are also provided.
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The higher order integral equation method of
homogenization: antiplane elasticity

Duncan Joyce, William J. Parnell and 1. David Abrahams

Abstract Many techniques have been developed to attempt to model the effec-
tive macroscopic quasi-static properties of fibre reinforced composites (FRCs) from
knowledge of their microstructure. One such example for periodic fibres is the
method of asymptotic homogenization (MAH), which relies on computational eval-
uation of the cell problem. This work introduces an alternative, new method, based
on an integral equation formulation of Naviers equations for low frequency antiplane
shear (for ease of illustration) wave propagation. The asymptotic scheme developed
enables new explicit analytical formulae, valid at arbitrary volume fraction, to be de-
rived for the effective shear moduli in terms of parameters linked to specific physical
phenomena (e.g. cross-sectional shape, phase properties, lattice type) thus provid-
ing greater insight than many extant methods. It appears that the scheme is simple to
extend to higher dimensions in elasticity, the general transport problem and in some
limits, the full elastodynamic problem to predict the onset of band-gaps.

1 Introduction and geometry of the problem

The integral equation method (IEM) was developed by Parnell and Abrahams in [1],
where the antiplane (SH) wave problem for fibre reinforced composites (FRCs) was
considered at leading order with respect to both the volume fraction of inclusions
and the non-dimensional frequency €. Advantageous features of this method include
its validity for non-dilute regimes and the structure of the solution being such that
individual terms account for specific physical features of the system such as the fibre

Duncan Joyce
University of Manchester e-mail: duncan.joyce @postgrad.manchester.ac.uk

William J. Parnell
University of Manchester e-mail: william.j.parnell @manchester.ac.uk

I. David Abrahams
University of Manchester e-mail: i.d.abrahams @manchester.ac.uk

European Research Network, Eighth Meeting, Gregynog, 2014. 67


marc
Nouveau tampon


cross-section and material properties. This is in contrast to the method of asymptotic
homogenisation (MAH) where no such separation of physical phenomena occurs
- instead the detail is hidden within the cell problem and the numerical schemes
involved in solving it.

However, the method can be extended to obtain an asymptotic system in the
volume fraction, and it is the aim of this work to show how that extension is made.

Consider identical isotropic fibres of an arbitrary shape embedded in an isotropic
host material where the lattice geometry is restricted such that the effective medium
appears at to be, at most, orthotropic on the macroscale (see Figure 1). Antiplane
waves are then polarized in the x3 direction, and propagate in the x1, x, plane.

Fig.1 An illustration of the cell geometry used, x3 direction coming out of page, in line with fibre
direction. pt denotes shear modulus, p density. I subscripts refer to the inclusions and 0 the host.

Under this regime, the volume fraction ¢ is defined as being per unit span in
x3 (the proportion of the composite that consists of fibres) and non-dimensional
frequency is € = gko < 1, g being the characteristic length scale of the periodic cell
and k(o the wavenumber of the host.

2 Deriving the asymptotic system

Combining the scalar wave equation for dispalcement w(x) in the x3 direction and
the governing equation for the Green’s function G(x), and applying continuity of
displacement and normal stress on fibre-host interfaces, where x = (x;,x,), we find

o) ==1-m) T ([ i) 9,60-x1ay). )

sp=—00
stel

where m = /1. Consider x € Dy, so we are within the (a, b)th fibre with po-

sition vector r. Differentiating (1) with respect to x; (k = 1,2), Taylor expand-

ing the Green’s function about the (s, ¢)th fibre at y = p, then multiplying by

(x1 —r1)%(xa —r2)% /(8!€)), integrating in the x plane over domain D,;, and Taylor

expanding again about x = r gives
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W5 (r) Z<Z Y W (P)Cstapp,Opds 0P G(p— )>

p7r \n=1i,j,af=0

—(1=m)y (r), @)

where Cgop = O(9%+5+0+P+2) is a fourth order tensor, /3¢ (r) = 0(¢%+$+2)

is the shape factor and Wa(? (p) = 0(9%+5+2) is the displacement gradient tensor.

Cs¢qp and the shape factor are integrals within the (a,b)th fibre while W( 5 (p) is

an integral over the (s,#)th fibre. The shape factor is related to the famous P tensor
from the work of Eshelby [2].

By seeking wave type solutions which propagate in the x| direction of the form
Wi (r) = Whexp(inir), e () = o} explinr). 3
where ¥ = 1/}, we can then obtain an equation from (2) that is O(1) with respect
to €. This equation will involve terms known as lattices sums, which depend upon
the singular behaviour of 9, 8’ G(u) summed over all fibre locations.

By choosing different Values of & and &, we then obtain a system of equations
involving the effective longitudinal shear modulus uj. It turns out that the shape
factor can be written as a sum of displacement gradient moments, thus our system
has the following general form

%oo(I") %01 %02 -+ Wo((i)
GoI) %1 - L (0

A Wiy’

L C oo, 4
Sy A - -2 ’ @

Ho - Woo

with all matrix coefficients depending on ¢ and the lattice sums and in particular
the ¥ (I") coefficients depend on ¥; through the function I'(y;) = 1/(1 — ¥?). This
segregation of the effective material properties within the system of equations is part
of a rich structure discused in the introduction.

To take into account the contributions at different orders of the volume fraction,
pose expansions of the form below and equate coefficients in ¢.

Vog =ile +uss0 +13507 1o Wol = 4o 10507+ )

F(m:%wwalw.... ©6)

The coefficients in the expansion of I"(7;) are the most important to consider - after
truncating to some order in ¢, then we can obtain u; from this expansion and the

relation )/12 = 1/u;. One could also obtain u by simply rotating the material by /2
and using the same wave type again.
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With these expansions, (4) becomes similar to solving an eigenvalue problem,
with the coefficients of WO((;) forming an eigenvector and ] the eigenvalue.

One may observe at what point to close the system in order to find I'(y;) to a
particular order by observing the terms from the displacement gradient moments
that appear at each order of ¢ in the first equation of the system.

3 Results

MAH
IEM, O(¢$)
IEM, O(6)

IEM, O(6°) 4

0.42 0.44 0.46 0.48

Fig. 2 Plot of effective longitudinal shear modulus versus radius of circular cylindrical fibres for
square lattice, m =10, illustrating the convergence of the IEM to the MAH

One finds that for circular cylindrical fibres using a square lattice, {; is of the
form

202 yeled
(S - g g
S M2CE, M2CE.

L () 1)t — ot pt — L8 g5 4
where .# = (1 —m)/(14+m) and S}, C4; and Cg; are terms that depend upon the
second, fourth and eight order lattice sums respectively.

The above graph illustrates how the addition of the higher order terms in ¢ in
this quotient help this result converge to previously obtained results obtained by the
MAH.

Q)
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Spectral Methods: An alternative to root-
finding routines for finding
dispersion curves of anisotropic
homogeneous media.

F. Hernando, M. Lowe and R. Craster.

Abstract Guided waves are now well established in NDE and there
is ongoing research interest in guided waves for many applications
so it is important to have reliable and accurate information about the
waves and modes that can be propagated in a chosen waveguide
structure. Valuable information is provided by the dispersion curves
of different modes within various combinations of geometries and
materials. However, the approach normally used to find them, root-
finding methods, suffers from certain limitations concerning ge-
ometry, type of material, ill-conditioning of the matrix used to de-
rive the dispersion relation, the well-known "large-fd" problem and
incomplete solutions (missing modes).

An alternative to root-finding routines are Spectral Methods.
These have been previously and successfully used in simple
waveguide cases and show that all the above pitfalls and limitations
are overcome. Moreover, the ease of coding and its great generality
make this approach a better option in many cases where root-finding
routines do not perform well or simply fail to solve the problem.

In this work we extend the Spectral Method to solve more com-
plicated problems of interest for the industry and the field of NDE
which, to our knowledge, have not yet been studied. All the cases
presented deal with anisotropic homogeneous perfectly elastic mate-
rials in flat and cylindrical geometry. In the latter geometry, we
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study both axial and annular propagation of Longitudinal and Tor-
sional modes as well as a fairly detailed study of Flexural modes in
anisotropic media. We also address the problem of multi-layered
systems with both solid and fluid layers and the implementation of a
spring model for imperfect boundary conditions between layers.
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Flexural waves in structured elastic plates -
trapped modes, transmission resonances and
Elasto-Dynamically Inhibited Transmission
(EDIT)

S G Haslinger

Abstract We consider the two models of scattering and Bloch waves for a struc-
tured system of periodic gratings in an infinite plate. The waves represent flexu-
ral deflections governed by the fourth-order biharmonic plate equation, placing the
work in the relatively new field of platonics. By analogy with photonic and phononic
crystals, the two-dimensional structures in thin elastic plates are known as platonic
crystals. The emphasis is on the analysis of trapped modes and transmission reso-
nances for different configurations of the grating stack and physical parameters of
the flexural waves. In particular we analyse the phenomenon of Elasto-Dynamically
Inhibited Transmission (EDIT), where a resonance in transmission is cut in two by
a resonant minimum arising from destructive interference.

1 Introduction

We consider thin structured plates that contain an interaction region consisting of a
finite number of periodic gratings, and our particular interest is in the localisation
of flexural waves within the grating structure. Our model allows for the gratings to
consist of cylindrical inclusions whose cross-sections are of arbitrary smooth shape
or size. Here we concentrate on circular voids of finite radius with clamped bound-
aries, and the limiting case of the radius tending to zero, corresponding to a pinned
point. We demonstrate that the grating stack supports sharp transmission resonances
for low-frequency flexural vibrations. The resonances arise from the interaction with
the plane wave, characterised by the angle of incidence 6; and spectral parameter 3.

We show one such configuration in Fig. 1, where the outer pair of the 3-grating
system consists of clamped-edge voids with a finite radius a, whilst the central
grating contains pinned points. The relative shift of the central grating & is crucial
for supporting a filtering effect similar to electromagnetically induced transparency
(EIT). We term this Elasto-Dynamically Inhibited Transmission (EDIT). This novel
phenomenon for elasticity problems was first observed in [2]-[5]. It is characterised
by a resonant peak in transmission being cut in two by a resonant dip with an ex-
tremely high quality factor.

Furthermore, the grating stack can be considered as a structured waveguide for
trapped modes. For a simple case of a stack of rigid pins, a quasi-periodic Green’s
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Fig. 1 Stack of gratings consisting of an outer pair of finite nonzero inclusions with radius a and
period d, and a central grating of rigid pins. The relative grating separation between consecutive
gratings is 1, and the relative lateral shift of the central grating is &.

function is employed to derive the dispersion equation for Bloch waves in such a
waveguide. A connection is established with the transmission problem by identify-
ing parameters of the grating stack and of the incident wave, to generate a transmis-
sion resonance linked to a trapped Bloch wave within the structured waveguide.

2 Transmission resonances for gratings stacks

A plane wave representing flexural displacements is incident on a grating system
that separates two half-planes in an infinite flexural plate (see Fig. 1). It is shown that
a nearly 100 % transmission is achievable for a certain combination of parameters
within a narrow frequency range.

2.1 Governing equations

Let the amplitude W be a solution of the scattering problem for the biharmonic
operator (see [8]):
AW (x) — B*W (x) =0, (1)

where B2 = w+/ph/D. Within this expression, D = Eh*/(12(1 —v?)) is the flexural
rigidity of the plate, 4 denotes the plate thickness, E is the Young modulus and v is
the Poisson ratio. In addition, p is the mass density and w is the angular frequency.
The field W satisfies the Bloch quasi-periodicity condition along the horizontal

X-axis:
W (x+mdel)) = W (x)e'%m? (2)
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where m is an integer, d is the period, and o is the Bloch parameter oy = f3 sin 6;,
where 6; is the angle of incidence (see Fig. 1).

The boundary conditions on the circular boundaries of the inclusions are Dirich-
let clamping conditions:

aw

W o

=0,

r=a

=0. 3)

r=a

We initially consider the limit as a — 0, corresponding to an array of rigid pins con-
straining the plate. The radius of the inclusions is important for the implementation
of the method that we use to solve the problem, as outlined in the papers [2]-[8].

2.2 Method of solution

We consider the scattering of plane waves, either of the Helmholtz type Wy or of
the modified Helmholtz type Wy, by a grating of inclusions of radius a. The flexural
displacement W is expanded for y > a and y < —a in terms of sums of Wy and Wy,. In
order to connect these two types of expansions we introduce multipole expressions
for W in the region —a <y < a. The multipole expansion for Wy involves cylindrical

waves J, (Br)e® and H\" (Br)e® with respective amplitudes A, and E, :
Wi(x) = Y {Audu(Br) + EH\ (Br)}e™. @)

The multipole expansion for Wy, involves modified Bessel function terms 7, (8r) en?
and K, (Br)e"® with respective amplitudes B, and F,:

Wax)= Y {Bulu(Br) + FuKo(Br)}e™, )

n=—oo

The amplitudes A,,, By, E,, F, are the multipole coefficients to be determined, and
they are related by the boundary conditions (3).

The combination of the Rayleigh identity and the boundary conditions gives a
system of linear equations, which is truncated and solved to evaluate a set of mul-
tipole coefficients. These in turn are used to evaluate plane wave amplitude coeffi-
cients for the fields above and below the grating. These are assembled into scattering
matrices for reflection and transmission that completely characterise the grating’s
scattering action, and enable us to identify transmission resonances for a finite num-
ber of gratings.

Several results illustrating the transmission resonances have been published in
the papers [2]-[5]. Here we illustrate the EDIT effect in Fig. 2 for a rigid-pin triplet.
For more complicated structures, the required tuning of the grating stack as a scat-
tering system is rather complex, but it becomes an easier task with the knowledge
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Fig. 2 EDIT effect for a triplet of rigid pin gratings with the central grating shifted by & = 0.25200d
for the angle of incidence 6; = 30°. Total transmittance Tio (curve 1) as a function of f for the triplet.
Curve 2 represents the total transmittance for the outer pair of gratings.

of dispersion properties of trapped flexural waves, attainable by treating the system
as a waveguide.

3 Structured waveguide

We consider a waveguide consisting of a finite number of platonic gratings, which
may be shifted relative to one another. We are primarily interested in a triplet be-
cause there are similarities with the scattering problem for which we identify ex-
tremely narrow frequency bands that support transmission resonances. The combi-
nation of the specific angle of incidence 6; and its corresponding spectral parameter
B means that each transmission peak is defined by a specific value of the Bloch
parameter o = f3 sin 6;.

3.1 Grating Green’s function: plane wave form

We consider a single grating of rigid pins as a line of point forces with constant
separation d. Therefore we use a quasi-periodic Green’s function G(x,y; o, ) for
the biharmonic operator [1], satisfying the equation

(4= BYG (i 00.) +30) Y Sle—nd)explicond} =0, (©)

where o is the Bloch parameter and 3 is the spectral parameter associated with the
frequency @ by B2 = @+/ph/D. The plane wave form form of the Green’s function
is
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This quasi-periodic Green’s function (7)-(8) is used to derive the dispersion equa-
tion for Bloch modes within the rigid-pin system. The modes take the form of com-
plex resonances close to the real axis, and we classify them as even and odd modes.
Dispersion curves for the modes are the trajectories along which the eigenvalues
are zero (or more precisely, since we have complex entries, have a modulus close
to zero). We are primarily interested in the two lowest branches of the waveguide’s
dispersion curves, illustrated in Fig. 3(a). The crossing of the two dispersion curves

dispersion curves

¢ j j ' i even mode
T Y
] 0.8 an
asp / \
[ 0.6 / \
3.3F 0.4
321 ",r
| 0.2 V4 ,
” ‘ I ’ ~T 3500 3505 3600 3605

Fig. 3 (a) Dispersion diagram for a waveguide consisting of an unshifted triplet with the horizontal
axis representing @ in the range 0.5 < 0 < 3, and f3 on the vertical axis in the range 3 < § < 3.8. The
red curve represents the odd modes, and the blue curve, the even modes. (b) Normalised transmitted
energy versus spectral parameter 3 for a triplet of rigid pins with angle of incidence 6; = 0.481273
and relative shift of the central grating & = 0.012.

is synonymous with a double eigenvalue case, and is of great interest. In Fig. 3(b),
we consider the corresponding transmission resonance example for an angle of in-
cidence in the vicinity of the intersection point, and we observe an EDIT-like effect,
when we introduce a small non-zero shift of the central grating & = 0.012.

3.2 Tuning of the resonance transmission system

The two approaches outlined above present the grating stack as a periodic scatterer
and as a waveguide. The results of analysis complement each other in a way that
enables us to design a system possessing EDIT. The required tuning of the grating
stack becomes a straightforward task with the knowledge of dispersion properties of
trapped flexural waves. The intersection point of the dispersion curves corresponds
to the frequency in the neighbourhood of EDIT. Further refinement is achieved by
the choice of the shift parameter &.
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Trapped modes in two dimensional waveguides

Cristina Sargent

Abstract Trapped modes are investigated in infinite, two-dimensional acoustic
waveguides with Neumann or Dirichlet walls. A robust and general boundary el-
ement scheme for the governing Helmholtz equation is derived. Known results are
confirmed and various new modes are identified, both inside and outside the contin-
uous spectrum of propagating modes.

An effective method for distinguishing between genuine trapped modes and spuri-
ous eigenvalues induced by the truncation of the domain is presented. This method
is also suitable for the detection and study of “nearly trapped modes” which are
closely associated with pure trapped modes. These are of great importance in physi-
cal systems as they display many features of trapped modes which may be precluded
by the imperfect geometry.

1 Introduction

Within the framework of classical wave theory, trapped modes are time-harmonic
oscillations at some well-defined frequency, localised to the vicinity of a boundary
or trapping structure in unbounded domains. The decay with distance away from
the trapping feature is usually exponential although algebraic decay can also occur.
Mathematically, a trapped mode corresponds to an eigenfunction of the relevant
operator which does not radiate to the far field.

Over the past 60 years the study of trapped modes has intensified and diversi-
fied. Depending on the context, trapped modes are known as acoustic resonances,
Rayleigh-Bloch waves, edge waves, array guided surface waves, sloshing modes,
motion trapped modes and bound states.
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Trapped modes are considered here in an acoustic context but a comparison can
be made with the associated problems in water-waves and in quantum waveguides
[11, [31, [5], [6]. Time-harmonic oscillations, with angular frequency @, are consid-
ered so that the pressure fluctuation in the guide, ¢, satisfies the Helmholtz equa-
tion V2¢ +k%¢ = 0, subject to appropriate homogeneous boundary conditions. Here
® = kc where c is the wavespeed. A trapped mode (or acoustic resonance) corre-
sponds to a solution ¢ with finite energy. The positive value of the wavenumber k
for which the solution exists is referred to as the trapped mode frequency.

Trapped modes can be classified as embedded or non-embedded, depending on
whether their frequency is respectively above or below the first waveguide cut-off.
This distinction is important as it determines the stability of the mode. The non-
embedded modes are stable in the sense that if a geometric parameter is modified,
the mode persists up to some limit, with only a slight variation of the frequency.
In contrast, embedded modes may only exist for a specific combination of the ge-
ometric parameters and may be destroyed by an infinitesimal perturbation of the
configuration. This means that for many configurations, embedded modes may not
exist at all, or there may be only a few discrete geometric parameter values which
support such a mode. From a computational perspective the distinction is impor-
tant because embedded trapped modes require higher detection accuracy than non-
embedded modes as an eigenvalue in the continuous spectrum disappears under
small perturbations.

There is an immense amount of literature on trapped mode problems, covering
analytical, numerical and physical aspects to which it is hard to do justice. We men-
tion here a few results and relevant notions, with our list of references being far from
exhaustive.

For a specified geometry, uniqueness of the solution to a forcing problem at a
particular frequency is equivalent to the non-existence of a trapped mode at that
frequency. In 1950 John [7] established uniqueness for a particular class of single,
surface-piercing bodies which have the property that any vertical line emanating
from the free surface does not intersect the body. Ursell (1950) proved uniqueness
for a circular cylinder submerged in fluid of infinite depth [16]. Since then many
other partial results have been obtained (see, for example, Simon and Ursell (1984)
[15]) but a general proof of uniqueness for all bodies at all frequencies was not
found. The reason for the absence of a general uniqueness proof became clear when
M. Mclver (1996), constructed an explicit example of two surface-piercing bodies
for which the potential is non-unique at a specific frequency [11]. Detailed reviews
of the literature are provided by Linton & Mclver [10] and Kuznetsov et al. [9].

Ursell (1951) established the correspondence between the finite energy of a
trapped mode and the type of eigenvalue which gives rise to it [17]. If a fluid is
bounded by fixed surfaces and by a free surface of infinite extent, the modes of vi-
bration with infinite energy form a continuous spectrum. A trapped mode has finite
total energy and corresponds to a discrete eigenvalue embedded in the continuous
spectrum. In a subsequent study, Jones (1953) established that semi-infinite domains
which are cylindrical at infinity have a continuous spectrum with a discrete embed-
ded spectrum [8]. Jones’ work established the Helmholtz equation, with suitable
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boundary conditions, as a rich mathematical area for the study of trapped modes
which we continue in this work.

Following these initial results establishing their existence, trapped modes were
discovered in many contexts, from large physical structures supported by arrays of
standing columns to quantum waveguides and nanowire inclusions in metamaterials
[14]. Given their wide applicability, from non-destructive testing to, very recently,
enhancement of evanescent modes in the nearfield of a ’perfect lens’ [12], [13], a
systematic and efficient numerical method of detection of trapped modes is required.

Here we present an approach based on the boundary element method (BEM)
which we use to reveal the rich structure of trapped modes in two-dimensional
waveguides. The scheme was designed to be flexible, computationally efficient and
accurate. To ensure the validity of results, the technique was initially applied to the
above cases where solutions are either already known or can be calculated analyti-
cally. Subsequently it was applied to the study of geometries with one or two discs
of identical or different radius, at varying distances from each other. Another class of
geometries explored includes waveguides with rectangular, smooth, triangular sym-
metric and irregular wall cavities and also combinations of cavities and discs. All
cases were studied with various combinations of Neumann or Dirichlet boundary
conditions.

The method obtains approximate numerical solutions and accurately detects ex-
ponentially decaying modes in infinite guides by carrying out computations over a
finite portion of the boundary. Estimates of the radiation loss associated with each
mode are used to remove the spurious solutions introduced by the truncation of the
domain. This novel approach allows the study of general configurations for higher
frequency ranges where the presence of propagating modes make other computa-
tional methods ineffective. Other procedures have been employed for the numerical
detection of trapped modes, including the finite element method combined with the
perfectly matched layer (PML), as used by Duan et al. [2] for similar problems.
PMLs are advantageous in some problems, but we consider our BEM approach
more appropriate for trapped mode detection.

Trapped modes for two sound-hard discs, either of equal or different radius, are
examined for both Neumann and Dirichlet cases. For non-embedded modes we con-
firm the findings of Evans & Porter [4] and study the number and type of modes, fre-
quencies and dependence on geometry in detail. The non-embedded trapped mode
frequencies for one disc on the centreline, which are in agreement with those of
Callan et al. [1], were part of a suite of tests carried out to verify the method’s pre-
cision and validity. Details of additional modes which appear for larger discs are
found and provide a complete picture of trapped modes for this geometry and fre-
quency range. Up to four modes can be found for a Neumann guide with either one
or both discs such that 0.8 < a/d < 1, their appearance being determined by the dis-
tance between obstacles. Similar results were obtained for the Dirichlet case with
two identical sound-hard discs on the centreline, up to the third cut-off frequency of
the guide. The problem of two two-sound hard discs of different radius on the cen-
treline of a soft guide was also investigated. Trapped modes for two-dimensional
asymmetric Dirichlet and Neumann waveguides with cavities of rectangular, trian-
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gular or smooth shape and with a circular obstacle added to the centreline, aligned
with the cavity or removed from the centre are also investigated. The results suggest
that at least one symmetry line is an essential condition for the formation of trapped
mode type resonances. The addition of a new geometric parameter to a problem
which has one embedded trapped mode solution for a specific discrete geometry,
leads to the appearance of a continuous set of trapped modes.

Finally, the related and important topic of nearly trapped modes, which are reso-
nances with very small radiation, is discussed. Nearly trapped modes appear consis-
tently throughout the numerical investigations. It was found that in general, the spe-
cific set of parameters which corresponds to an embedded trapped mode is a discrete
point in a small continuous band of parameters which support nearly trapped modes.
As a result, many geometries closely approximating that required for a trapped
mode, will give rise to a nearly trapped mode, which in a physical system might
be indistinguishable from an exact resonant mode.
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Development of ultrasonic propagation
simulation for acoustic thermometry in liquid
sodium

Nicolas MASSACRET, Joseph MOYSAN

Abstract: In the frame of research on Sodium cooled Fast nuclear Reactor (SFR),
CEA aims to develop an innovative instrumentation, specific to these reactors.
The present work relates to the measurement of the sodium temperature at the
outlet of the assemblies of the reactor’s core by an ultrasonic method. This instru-
mentation involves the propagation of ultrasonic waves in liquid sodium, ther-
mally inhomogeneous and turbulent. Environment causes deviations of the acous-
tic beam that must be understood to predict and quantify to consider ultrasound as
a measure means in a core of SFR reactor.

To determine the magnitude of these influences, a code named AcRaLiS
(Acoustic Ray in Liquid Sodium) has been implemented. This implementation has
been performed to allow rapid simulations of the wave propagation at several
megahertz in this particular environment. This code provides ultrasounds devia-
tions and changes in beam intensity.

Two experiments were designed and conducted to verify the code. The
first, named UPSilon innovates by replacing sodium by silicone oil in order to
have a stable thermal inhomogeneity during the experiment. It allows to determine
the validity of the code AcRaLiS with thermal inhomogeneities. The second,
called IKHAR allows to study the influence of water turbulence on the propaga-
tion of waves, using the Kelvin-Helmholtz instabilities.
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1 Acoustic thermometry in liquid sodium

Sodium-cooled fast reactors have been chosen by France as the reference option in
the framework of the Generation IV international forum. For this kind of reactor,
it is necessary to develop a specific instrumentation, compatible with sodium used
as coolant, and to achieve the objectives of the Generation IV, particularly in
terms of reliability.

Concerning the measurement of the sodium temperature at the outlet of
the subassemblies of the reactor’s core, an instrumentation being developed by the
CEA is to send an acoustic wave reflect on one or more heads of subassemblies.
The measurement of time of flight of ultrasound between each of the two edges of
the head is used to determine the speed of ultrasound in the liquid sodium. This
speed is directly related to the sodium temperature, which allows to measure this
parameter.

This method has several advantages in terms of accuracy, speed and
reduces the instrumentation volume above the core. However, it involves the
propagation of ultrasound between the transducer and the subassembly head: a
medium where the sodium temperature and speed fields can cause ultrasonic
deviations. Such deviations must be quantified to determine their effect on the
temperature measurement.

2 Acoustic ray simulations

In order to solve this problematic, a code has been implemented to simulate the
propagation of ultrasound. This code named AcRaLiS (Acoustic Ray in Liquid
Sodium) is based on the acoustic ray theory and allows to trace the path of ultra-
sounds in an environment where the fields of temperatures and speeds are inho-
mogeneous. In a second part of the code the Gaussian beam summation method is
used to determine the energy profile of the wavefront. It will be specified in this
section the model and the method of implementation used in this code.

3 Experimental verifications

Two experimental benches were created to verify the results of AcRaLiS code.
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The first named UPSilon (Ultrasonic Path in Silicone Oil) is used to measure ul-
trasonic deviations in inhomogeneous temperatures fields. Experiments were per-
formed in silicone oil, whose high viscosity limits the convection phenomena.
Several experimental results are presented in this section.

The second device named IKHAR (Kelvin-Helmholtz Instabilities of
Acoustics for Researches), is used to measure ultrasonic deviations in
inhomogeneous speeds fields. This device implements eddies, named Kelvin-
Helmholtz instabilities, in a water flow. Regular frequency and well-known speed
field of these instabilities allows to know precisely the environment in which
propagates ultrasound. As the experiments are still in progress, only the principle
of operation of the device will be presented in this section.

4 Numerical simulations for acoustic thermometry in reactor

The use of this numerical tool for acoustic thermometry in reactor allows to
determine how geometric features of the heart will cause acoustic disturbances.
This code also allows to quickly determine the effectiveness of different
measurement configurations. Several simulation results are presented in this
section.
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Tunable elastodynamic band-gaps

Ellis Barnwell, William J. Parnell and 1. David Abrahams

Abstract We discuss tuning the antiplane elastic material properties of a 2D peri-
odic elastic (phononic) material by applying a nonlinear prestress. The material in
question is a series of annular cylinders embedded in a uniform host material. Wave
propagation in the pre-stressed configuration is modelled by using the theory of
small-on-large. Once the incremental wave equation is determined, the plane wave
expansion method is used to find the band diagram for a neo-Hookean material. It
is shown that stop bands can be switched on and off by application of the prestress.

1 Introduction

Complex metamaterials are at the heart of modern day engineering and technology.
A vast number of such materials possess an intricate microstructure that supplies
macroscopic behaviour which is non existent in naturally occurring materials. It is
desirable to create macroscopic properties that can be tuned in real time. Predicting
how the microstructure affects the macroscopic properties on a static and dynamic
level is pivotal to the design and tuning of these materials. In this paper we will illus-
trate that the dynamic properties of a phononic material can be tuned by employing
nonlinear elastomeric materials.

In the field of elastodynamics, there has been significant recent interest in the
tunability of periodic structures. For example, Goffaux and Vigneron [1] introduce
tunability of a composite by rotating square cylinders inside a fluid. Early work on
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the effect of a finite deformation on the incremental wave propagation through a
material was carried out in 1D by Rogerson and Sandiford [4] and expanded upon
later by Parnell [2]. In the latter of these papers, the stop and pass band structure
is investigated for a range of prestress parameters. By making use of simulations,
Wang and Bertoldi [6] have investigated the tunability of 3D structures. This paper
makes use of the finite element method to find the band gap structure.

In this paper we will discuss the propagation of antiplane elastic waves through a
prestressed hyperelastic material. The material in question is two dimensional and is
made up of a periodic array of annular cylinders embedded in a homogeneous elastic
host. Each cylinder may be inflated by changing its internal pressure. The theory of
small on-large is used to determine the equation governing incremental antiplane
waves propagating through the prestressed medium. Subsequently the plane wave
expansion method [5] is used to efficiently determine the band structure. The effect
of the prestress on this structure is investigated and it is shown that stop bands can
be switched on and off by inflating or deflating the cavities.

2 Cavity inflation

The basic phononic crystal structure will be a periodic array of hyperelastic annular
cylinders embedded in a homogenous host material. We restrict ourselves to the
propagation of out of plane elastic shear waves that are polarised along the axes
of the cylinders. We consider a prestress that has been induced by the inflation of
the cylinders along with an axial stretch. The host material outside of the cylinder
remains unstressed. The configuration is illustrated in figure 1 where the prestressed
annular region is located in ry < r < ry. The outer radius R; = r| remains unchanged
during the deformation.

Undeformed Configuration Deformed Configuration

L l
(a) (b)
Fig. 1 Illustration of the unit cell for (a) the undeformed configuration and (b) the deformed con-
figuration. The cylindrical annulus is embedded in an unstressed, homogeneous medium with the
hatched pattern.
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Working in cylindrical polar coordinates r, 8,z and assuming that the pre-stress
induces only radially varying deformation, the incremental equation governing the
time-harmonic (with frequency w) antiplane wave amplitudes w(x) = w(x,y) in the
prestressed cylinder has been derived in [3] and is given by

L (w5 ) + g (w05 ) +patv =0 )

where U,(r) and ug(r) are the incremental shear moduli and p is the mass den-
sity. For an incompressible neo-Hookean material the incremental moduli in the
prestressed region are given by

oy W Pr4+M

where 1 is the shear modulus in the annulus and L is the stretch along the axis. The
parameter M characterises the deformation and is given by M = R% (L=' —1). The
mass density is unchanged by the deformation.

3 Plane wave expansion

Since the structure of the material is periodic in Cartesian coordinates, in order to
apply the plane wave expansion (PWE) method, convert equation (1) into Cartesians
X, 9,7, 1.e.

0%w

0%w
(Prr+y’e) 55+ (yzur+x2ue) T + 2y =207 10) 55

au, au, aw au, au, adw

2 . 2

+< o Tt xue> I < MRy ke ) S
+ (2 +y)pa*w=0 3)

The PWE is then employed, expanding each of the coefficients of the derivatives
as Fourier series. We also assume that w(x,y) has a Bloch-Floquet form, where the
periodic part is also given as a Fourier series. By doing this, we obtain a generalised
eigenvalue problem given by

Z [a(;/,(; (Ky+ Gx)2 +bg g (Ky+ Gy)z +cgr—g (K +Gy)(Ky +Gy)
G

— l'dG/,G (Kx + Gx) — ieG/,G(Ky + Gy) — PG -G 602 wg =0. @

To find the band structure, we impose a Bloch wavenumber, K, K,, and determine
the associated eigenvalues, @, scanning around the edge of the Brillouin zone.

European Research Network, Eighth Meeting, Gregynog, 2014. 89


marc
Nouveau tampon


Undeformed, Ry = 0.45 Deformed, Ry =0.45,rp =0.74, L =2

= 1.2 = 1.2

Q Q

5 g

% 1 ] § 1

2 0.8 ] ‘_é 0.8

206 £ 06

5 g

£ 04 £ 04

= =

= =

£02 £02

€0 €0

M r X M M r X M
Wavenumber Wavenumber
(@) (b)

Fig. 2 The first three modes for an undeformed cylinder of initial radius of Ry = 0.45. Figure (b)
shows the band diagram of the deformed configuration corresponding to an axial stretch of L =2
and deformed cavity radius rp = 0.74. A stop band is shown by the shaded region.

In figure 2 we illustrate how a stop band can be switched on by applying an
internal pressure (or equivalently, applying an axial stretch) and increasing the inner
radius. The first three modes are plotted for an initial inner radius of Ry = 0.45 in the
undeformed configuration and the prestressed configuration corresponding to L = 2.

4 Conclusion

In this paper we have utilised the plane wave expansion method to determine the
band structure associated with antiplane wave propagation in a prestressed 2D non-
linear composite. The incremental wave equation was found using the small-on-
large technique for a finite deformation of the hyperelastic medium. This method
has allowed us to efficiently find the band gap structure and it has been shown that
it is possible to switch on and switch off stop bands by employing a prestress.
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Cloaking of Finite Inclusions for Flexural Waves
in Thin Kirchhoff Plates Using Active Control
Sources

J. O’Neill, O. Selsil, R.C. McPhedran, A.B. Movchan, N.V. Movchan

Abstract We present a new analytical method to create an active cloak for an in-
clusion in a thin Kirchhoff plate. In order to cloak the inclusion, we place control
sources outside of the inclusion and choose their intensities to eliminate propagating
components of the scattered wave, thus reconstructing the incident wave.

1 Introduction

Since the beginning of 2007 there has been a vast number of publications on cloak-
ing; more than 200 articles mention cloaking in their titles, with articles in the thou-
sands having been stimulated by some ground-breaking papers by Leonhardt [1] and
Pendry et al. [2]. We note that the initial subject of cloaking visible light has been
broadened, with cloaking techniques being developed for a whole range of wave
types, such as microwaves, surface plasmons, water waves, acoustic and elastody-
namic waves, seismic waves and flexural waves.

We distinguish three broad classes of cloaking systems. The initial systems of
Leonhardt and Pendry achieved scattering reduction by surrounding the object by a
well-designed coating, which we term interior cloaking. Another method achieves
scattering reduction in a region outside the system: external cloaking (see Nicorovici
et al. [3]). The topic of our interest here is that of active cloaking, which relies
on locating a number of active sources outside the object. For early work on this
method we refer to Miller [4] and subsequently to Guevara Vasquez et al. [5] and
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Zheng et al. [6]. Norris et al. [7] developed a method to evaluate the amplitudes
of active source terms that made direct use of the results of Guevara Vasquez et al.
[8], which was later extended to elastodynamic cloaking (Norris et al. (2014) [9]).
Transformation elastodynamics, as well as active exterior acoustic cloaking, are the
topics presented in great detail in the comprehensive article by Guevara Vasquez et
al. [10]. Our work here was stimulated by the work of the Milton group (see for
example Guevara Vasquez et al. [11], [12]).

We build our study on previous investigations of the interaction of flexural waves
with structured systems of scatterers (Norris & Vemula [13], Evans & Porter [14],
Movchan et al. [15], McPhedran et al. [16] and Movchan et al. [17]).

2 Scattering of Flexural Waves by an Inclusion in the Presence of
Control Sources Present - Reduction of the Shadow Region

We consider propagation of flexural waves in a thin Kirchhoff plate containing an
arbitrarily shaped inclusion with a smooth boundary. Our ultimate aim is to success-
fully cloak this inclusion in the presence of an incident wave, using active control
sources (point sources) located in the exterior of the inclusion. We then choose the
source intensities to eliminate propagating components of the scattered wave, thus
reconstructing the incident wave.

Initially we study the problem of a clamped (rigid) inclusion, that is, we pose zero
displacement and zero normal derivative of the displacement on the boundary of
the inclusion. We emphasise that our proposed method is suitable for an arbitrarily
shaped inclusion. We then discuss, in detail, the canonical case of a circular cylinder
which allows for an analytical solution.

We exemplify our results in a number of illustrative cases: (a) The results for the
problem for which the incident wave is represented by the Greens function corre-
sponding to a remote point source is shown in Fig. 1. The inclusion is assumed to
be of circular shape in this particular case. (b) The results for the problem for which
the incident wave is a plane wave is shown in Fig. 2. The inclusion is assumed to be
of arbitrary shape with a smooth boundary in this particular case.

For all the details we refer the reader to O’Neill ez al. [18].

If time permits, we will also discuss the case when the cylindrical inclusion is
coated with another material, whose properties differ from the inclusion itself and
its surrounding matrix. We will surround the coating with active control sources as
described above.
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Fig. 1: The large black dot depicts the position of the cylinder, the small dot on the far left the
position of the point source emitting the incident wave and the six small dots around the cylinder
the control sources, respectively. Effectively perfect cloaking achieved by the use of six control
sources.

A 1.1663

o |

-1

V¥ -1.0761

Fig. 2: Left: Enlarged view of the scatterer and the locations of the control sources. Right: Effec-
tively perfect cloaking achieved by the use of seven control sources.
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3 Conclusion

We have obtained an effectively perfect active cloak of an inclusion for flexural
waves in an infinite thin plate, suppressing the shadow region behind the inclusion.

The method we will present is generic and extends to other types of boundary
conditions as well as arrays of defects rather than a single scatterer.
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Transformation platonics and cloaking

D.J. Colquitt, M. Brun, M. Gei, A.B. Movchan, N.V. Movchan, and L.S. Jones

Abstract This paper addresses the important issue of transformation elastodynam-
ics as applied to thin plates. The fourth-order partial differential equation governing
the motion of flexural waves in thin plates is not invariant with respect to arbitrary
changes in coordinate system, but maps to a more general partial differential equa-
tion. Nevertheless, as demonstrated in this paper, it is possible to give a physical
interpretation to the transformed equation within the framework of the linear theory
of pre-stressed plates. This paper provides a formal framework for transformation
elastodynamics as applied to thin elastic plates.

1 Introduction

Following the publication of two seminal papers in 2006 [1, 2], there has been very
considerable interest in transformation optics, particularly as applied to the design
of invisibility cloaks. The foundation of transformation optics is the invariance of
Maxwell’s equations with respect to coordinate system. In simple terms, an invisi-
bility cloak can be created by deforming a region of space such that a disc is mapped
to an annulus. Any objects placed inside the inner radius of the annulus is said to
be invisible in the sense that waves will propagate around the annulus as if it were a
disc. Unfortunately, the partial differential equations governing other physical sys-
tems are not generally invariant under an arbitrary coordinate mapping. In particular
Navier’s equations, which govern waves in elastic solids, are not invariant under a
general change of coordinates [3, 4]. However, it has been shown that a more gen-
eral constitutive model remains invariant [3]. More recently, it has been shown that
approximate elastodynamic cloaking can be obtained by the application of a finite
pre-strain [5, 6] or pre-stress [7].
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Despite the lack of invariance of the equations governing the motion of flexural
waves in thin plates, transformation elastodynamics has been used in the design of
invisibility cloaks for flexural waves in thin elastic plates [§—10]. The present pa-
per is concerned with the construction of a rigorous transformation theory for the
dynamic equations of flexural waves in Kirchhoff-Love plates. In contrast to the
elastodynamic case [3-5, 11] and previous work on plates [8, 9], it is shown that it
is possible to construct an invisibility cloak for flexural waves in thin plates with-
out recourse to non-symmetric stresses, tensorial densities, or non-linear theories. In
particular, it is shown that by the application of appropriate in-plane forces it is pos-
sible to construct an exact invisibility cloak for flexural waves within the framework
of linear Kirchhoff-Love plate theory. This result could lead to a refinement of the
implementation of invisibility cloaks for flexural waves yielding an improvement of
the experimental results reported in [10].

2 Transformation platonics

The time-harmonic flexural deformation of an isotropic homogeneous Kirchhoff-
Love plate under pure bending is governed by [12]

P
(v;*(—cozh)w(X):o, Xy CR? (1)

where o, P, h, DO is the angular frequency, density, plate thickness, and flexural
rigidity respectively. Here, Vx denotes the gradient with respect to the original un-
transformed coordinates. In what follows it is convenient to work in Cartesian coor-
dinates and use Einstein summation convention. The differentiation in the equations
below is applied with respect to the vector variable x in the transformed domain.
Consider an invertible transformation .% : xy — Q and x = .% (X). In new coordi-
nates equation (1) may be expressed as

JGijGruw iju +2(JGijGre) ;W jue

¥

+ [Gij(-]Gké),ij +2G ik (JGie,i) T GijilUGre) j+ JGikA,iGj[,j] W ke

+ [G,‘j,,‘ (JGkg,k) J +Gij (JGké,k)Jj} w— %wzw =0, (2
where the symmetric tensor G;; = J~!F;,Fj, has been introduced, together with
the deformation gradient Fj; = dx;/dX; and the Jacobian J = detF. It is clear from
equations (1) and (2) that the governing equation is not invariant under arbitrary
spatial transformation. Moreover, equation (2) cannot be identified with that govern-
ing flexural waves in an anisotropic inhomogeneous Kirchhoff-Love plate, namely:
DijkEW,ijké + 2Dijk€,iWAjké +Dijk£,ijw,kf —hp w?*w = 0. Although the first two terms
have the same form as (2), the discrepancy arises in the remaining terms involving
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first and second-order derivatives. This discrepancy is irreconcilable, regardless of
the choice of material constants in the transformed domain.

Nevertheless, a physically meaningful interpretation may be attributed to the
transformed equation (2) by means of an appropriate combination of pre-stress and
body forces. In the presence of in-plane forces, the time-harmonic flexural deforma-
tion of an inhomogeneous anisotropic Kirchhoff-Love plate is governed by (see, for
example, [12])

Dijiew jjke + 2Djjrew jke + (Dijie,ij — Nee) W ge -+ Sew ¢ = hp o*w, 3)

where D; i, are the flexural rigidities, N;; are the membrane forces and S; are the
in-plane body forces. Additionally, the membrane and in-plane body forces are con-
strained to satisfy the equilibrium equation N;; ; +S; = 0. Using equation (3), the
terms in the transformed equation (2) may be identified with physically meaning-
ful quantities. In particular, the flexural rigidities, body forces, and density of the
transformed plate are immediately identified

P
Dy =DIGyGy. Si=D" [Gu(UGur) )] . p=T. o

The desired symmetry for the membrane forces is obtained by taking Ny, in the form

New =D [(JGuGiji —IGyGis) ;G (JGu,) | - (4b)

It is now straightforward to verify that the membrane and body forces satisfy the
in-plane equilibrium equation.

It has thus been demonstrated that, under a general coordinate mapping, the equa-
tion governing time-harmonic flexural vibrations of a linear isotropic homogeneous
Kirchhoff-Love plate transforms to an equation corresponding to a linear anisotropic
inhomogeneous Kirchhoff-Love plate in the presence of in-plane loads. It is empha-
sised that these loads depend only on the coordinate mapping and are not functions
of displacement nor time. In this sense, the membrane forces Ny, can be interpreted
as a pre-stress together with appropriate body forces Sy to ensure equilibrium. This
formalism represents a general framework in which transformation elastodynam-
ics for Kirchhoff-Love plates can be investigated. The reader is referred to [13] for
further details. The distinguishing feature of this interpretation is that, although a
generalised plate model is introduced, the framework is entirely linear and all terms
are identified with well understood physical quantities. A further notable feature of
the new framework, as above, is that it ensures that the stiffnesses have both major
and minor symmetries, the stresses are symmetric and the transformed density is
scalar. This is in contrast to the case of cloaks for vector three- and two-dimensional
elasticity [4] where there is either a non-symmetric stress [11] or tensorial mass
density and dependence of stress on velocity [3].

As a brief example, figure 1 shows the flexural displacement, generated by a
point source, for a cloaked and uncloaked void in a Kirchhoff-Love plate. In this
case, the cloak is based on a non-singular square push-out transformation previ-
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ously introduced in [14]. The corresponding material and geometrical parameters
and forces are obtained from the general formalism (4) and can be found in [13],
but are omitted for brevity.

Fig. 1 The flexural dis- /\\ ﬂ

placement generated by a .

point source in the presence

of an uncloaked (left) and u

cloaked (right) void. The non- / /
dimensional radian frequency

o = 200. > A = A
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Bloch wave excitation

Ian Thompson

Abstract The excitation of Bloch waves due to scattering at the edge of a periodic
structure is investigated, using a novel approach based on multipole expansions and
the z transform. Results showing the proportion of energy reflected back from the
edge are presented. Our method can be applied problems involving a variety of
different boundary conditions; in particular we do not assume that individual lattice
elements scatter waves isotropically.

1 Introduction

During the 1920s, wave propagation through periodic media was used by Felix
Bloch as a means of describing the behaviour of electrons in conducting crystals.
More recently, a desire to control and direct wave propagation in order to design
waveguides, filters and optical fibres has led to applications of Bloch’s ideas in sev-
eral physical contexts, including elastodynamics of composite materials and thin
plates, acoustics and photonic crystals [1, 2, 3, 4]. Much of the existing literature is
concerned with solving the propagation problem, in which modes that may propa-
gate through a given periodic structure are determined. Here, we are concerned with
the excitation of Bloch waves, and in particular with energy losses due to reflection
at an edge. This is motivated by the fact that periodic media are often used as filters,
exploiting the fact that Bloch wave propagation is restricted to certain frequency
ranges. Clearly the efficiency of such a filter is dependent upon the proportion of
incident wave energy that is converted into Bloch waves, and the proportion that is
lost due to reflection. These quantities cannot be determined from the wave bearing
properties of the medium alone; the excitation problem must be considered.

Tan Thompson
Mathematical Sciences, University of Liverpool, e-mail: ian.thompson@liv.ac.uk
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2 Band diagrams and the irreducible Brillouin zone

The standard means of describing the parameter ranges in which waves can propa-
gation through periodic media is the band diagram. Suppose that a lattice is formed
from objects centred at the points with position vectors

ij:jsl+P52a japeZa (1)

where the two-dimensional vectors s; and s, are not parallel to each other, though
they need not be mutually orthogonal. A Bloch wave that propagates through this
structure must possess the discrete translational symmetry

u(r+R;,) =eRirPu(r), )

for some Bloch wave vector 8 and all j,p € Z. Clearly, there is redundancy in
allowing B to range over R? due to periodicity and symmetry. For example, for the
hexagonal lattice with

si=[1,0] and s;=1[1,V3], 3)
nothing is gained by considering vectors 3 that lie outside the triangle with vertices

r =(0,0), M:(O,%) and K=72(1,V3), )
which is called the irreducible Brillouin zone. In many cases of interest (though
not all; see [5]), the minimum and maximum frequencies in each band occur when
B lies on the boundary of the irreducible Brillouin zone [4, pp. 68-69]. A typical
band diagram is shown in fig. 1(a). The basis vectors are given by (3), and the objects
forming the lattice are circular cylinders of radius a = 0.25. The Helmholtz equation

(V2 + k) u(r) =0, )

applies outside the cylinders, where the wavenumber k is defined as the ratio of fre-
quency to wavespeed, i.e. ®/c. On the surfaces the sound-soft (Dirichlet) boundary
condition u = 0 is enforced. The frequencies at which propagation is possible can be
read off from the band diagram. For the case in fig. 1(a), no modes may propagate
for k < 4.8, but there is propagation for 4.8 < k < 7.6. A second stop band occupies
7.6 < k < 8.2, and propagation is again possible for k > 8.2.

3 Bloch wave excitation

We now consider a semi-infinite lattice, formed from objects centred at the points

Rj,=jsi+psy, j€Z, p=0,1,... ©6)
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Fig. 1 (a) A typical band diagram. (b) Proportion of incident energy reflected back from the lattice.

so that the region where y < —a/2 is empty. This is illuminated by the plane wave

ui(r) _ eik(xcos Yo+ysin 1[/0). @)

The scattered field inherits the one-dimensional quasiperiodicity property
W (r+ jsi) = eV, (1) @®)

from the incident wave; therefore it has a multipole expansion [6, ch. 4] of the form

oo oo

ub(r) = i Y Y ArelRicosvo g (r —R,). 9)

n=—oc0 p=() j=—oo

Here, the outgoing wavefunction is defined as %, (r) = uY (k|r|)e™"®, where Y
is a Hankel function of the first kind and 8 is the anticlockwise angle between the
positive x axis and the vector r = [x, y]. The main obstacle to obtaining u* is the lack
of quasiperiodicity in the direction parallel to s,. To overcome this, we represent the
unknown amplitude coefficient as a z transform; thus

AP = zim /Q Al (z)z 7 dg, (10)
where (2 is a simple closed contour that encircles the origin. The superscript ‘4’
indicates that the functions A;! (z) are analytic inside €, so the integral evaluates
to zero for negative integers p. Applying the boundary conditions on the cylinder
surfaces using Graf’s addition theorem [6, thm. 2.12] then leads to a Wiener—Hopf
equation, which can be solved for A} (z). Ultimately, we are able to determine the
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amplitude coefficients in the grating mode expansion for the reflected field, that is

us(r): Z C;eik(xcosu/j—ysinw,-)7 y<0 (11)

Jj=—o0

where cos y; = cos yp +2jm/(k|s1|), and siny; = (1 — cos? y;)!/2. Conservation
of energy then requires that Eg + E7 = 1, where

1 2.
R= — Z ‘c’ siny;. (12)
S Yo [siny;|€R !

Here, Eg and Er are the proportions of energy reflected back from and transmitted
into the lattice, respectively. A contour plot showing Er for the structure described
in §2 is shown in fig. 1(b). The band structure is clearly consistent with fig. 1(a).
However, fig. 1(b) contains information about the behaviour of the field in the pass
bands that cannot be deduced from the band diagram. For example, a filter based
on this structure will screen out modes with k < 4.8 and 7.6 < k < 8.2, but it will
not function well except in a narrow band at near head-on incidence with k ~ 6.3,
because a large proportion of the incident energy will be lost due to reflection.

4 Conclusions

We have developed a technique for calculating the proportion of incident energy
reflected back from the surface of a periodic structure. This has implications for the
design of efficient components that exploit the wave-bearing properties of periodic
media. Full details of our method, along with additional results, are given in [7].
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Electric control of ultrasonic propagation in a Phononic Crystal using
piezoelectric materials

sid Ali Mansoura'?, Pierre Maréchal”, Bruno Morvan'?, Bertrand Dubus®®.

(1) LOMC, UMR 6294 CNRS, Université du Havre, 75 rue Bellot, 76600 Le Havre.
(2) IEMN, UMR 8520 CNRS, ISEN, 41 Boulevard Vauban, 59800 L.ille.

Phononic crystals (PC) are periodic structures composed of periodic arrangement of unit cells
in one or several directions. The propagation of ultrasound in these structures is determined
by the presence of bandgaps which leads to strong attenuation frequency bands. In this study
we propose to include piezoelectric materials in PC in order to achieve an active control of the
propagation of ultrasonic waves.

The control is obtained by connecting an external electric circuit to the electrodes of the
piezoelectric inclusions. The nature of the electric circuit (capacitance, inductance,...etc)
affects the ultrasonic transmission through the PC and is mainly governed by the electro-
mechanical coupling factor of the piezoelectric material. In this study, we are interested in the
propagation of ultrasound into a one dimensional PC. Two cases are considered depending on
whether the PC is made of an alternance of piezoelectric and passive plates or exclusively
made of piezoelectric layers.

Using the basic piezoelectric equation governing the wave propagation along the thickness of
the layer and applying the Bloch-Floquet conditions on the unitary cell of the PC, we obtain
the dispersion curves of the waves. We study the effect of the electric boundary condition on
the band structure for various connected electrical circuits. Experimental measurements are
also performed which demonstrate the possibility to create or shift bandgaps with an external
electric control.
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Low frequency ultrasound propagation in
layered media

David Gunn, Simon Holyoake and Ben Dashwood

Abstract: Long duration, low frequency modulated ultrasound is used for charac-
terising systems comprising layers of highly attenuating media. Maxima (notches)
in the transmission (reflection) spectra relate to half-wavelength resonance across
the target thickness. The resolution of the spectral thickness measurement can be
improved by reducing the increment of the frequency bins. Estimation of attenua-
tion is achieved via fitting the reflected and transmitted spectra to a forward
propagating wave using a transfer matrix.

1 Introduction

Ultrasound spectroscopy involves the analysis of the spectral characteristics of
echos and invariably uses fast rise, broadband pulses of MHz frequencies or above
[1]. While ultrasound spectroscopy is widely used for material property and struc-
tural inspection, the use of high frequencies can be limited in materials with very
high attenuation. Because of its greater penetration, low frequency ultrasound (20
kHz-200 kHz) offers an alternative inspection approach in materials where MHz
frequencies are highly scattered [2]. In layered sequences under normal incidence,
wave propagation within the bound layers is partially transmitted and reflected at
the bounding interfaces, where the internally reflected partial energy returns to the
near face to be partially transmitted and reflected again. Transmissivity and reflec-
tivity functions of layered systems have characteristic spectral notch signatures
that vary not only to changes in layer thicknesses but also with the introduction of
small water gaps between the solid media. Hence, while the use of long duration,
low frequency modulated ultrasound is a shift away from routine ultrasonic spec-
troscopy, it presents a potentially viable technological basis for inspecting the
condition of challenging layered systems that can be found in many medical, NDT
and engineering disciplines.

2 Signals for delivery of broadband ultrasonic energy

The sensitivity-bandwidth of the transmitting and receiving ultrasonic probes limit
the signal frequency band that can be delivered for insonifying targets. The

David Gunn: dgu@bgs.ac.uk; Simon Holyoake: simho@bgs.ac.uk; Ben Dashwood: bendas@bgs.ac.uk
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probes used in this study were considered to have a usable energy-bandwidth of at
least 50 kHz to 180 kHz. To incorporate this frequency band, stationary and non-
stationary test signals were designed to begin at a maximum frequency of 40 kHz
and end at a minimum frequency of 200 kHz. Good results were obtained with
non-stationary signals where frequency modulation throughout the signal duration
was controlled by linear, quadratic and cosine functions.

3 Experimental Facility

The experimental test facility comprised a water tank (1.65 m x 1.43 m x 0.90 m)
and infrastructure for the mounting and positioning of transducers and target mate-
rials within the tank. Transducers comprised piezoelectric-composite active main
elements that were high in sensitivity and had a -3 dB fractional bandwidth ap-
proaching 80 % around 100 kHz (Alba Ultrasound Ltd.). The positioning system
facilitates X, Y, Z and rotational positioning of the transducers with a positioning
reproducibility of + 116 pm. The test signals were generated and acquired using a
high-specification modular system containing: a ZT530PXI (Ztec Instruments
Inc.) 16-bit arbitrary waveform generator (AWG) and a ZT410PXI 16-bit digital
storage oscilloscope (DSO). A computer program written in the C++ language has
been developed in-house to automate the signal transmission and reception proce-
dure. The experimental set-up is shown in Figure 1, where ultrasonic signals are
propagated from the transmitting transducer (Tx) to the receiving transducer (Rx),
either through water (Set-up 1), or through a target system (Set-up 2); a reflected
signal is also detected on the Tx and acquired when a target is in place. The targets
used in this study include single and 3-layer media, nominally of 298 x 210 mm
face size. (Although this published abstract only presents results from the single
layer tests.) The target was approximately centred between transducers that were
set approximately 1 m apart. Signals were propagated with the target present and
also with the target absent in order to acquire a reference signal through water,
where required. During the experiments, the mean temperature of the water was
nominally 19.0 ° C.

4 Results

Examples of time domain linear FM signals received after reflection from, and
transmission through single layer targets are shown in Figures 2a, b. Examples of
these reflected and transmitted signals transformed into the spectral domain and
normalised (via spectral division) using the transducer Tx-Rx function through
water are shown in Figure 3. The spectral responses show periodic features related
to the half wavelength resonance across the thickness of the targets, which is de-
pendent upon the ultrasound phase velocity through the target material. The first
maximum in the transmission spectrum (or minimum in the reflection spectrum)
occurs at the fundamental frequency, where the thickness equals half the wave-
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length; subsequent maxima/minima occur at multiples of the fundamental fre-
quency [2,3]. The spectral shape is indicative of the mechanical Q factor, which is
related to attenuation coefficient, a by a = 7 f/Qv, where Q = f,/( f, — f,), where f,
is the mechanical resonance frequency, f; and f, are the frequencies where energy
is half that at resonance, and v is the velocity.

A transfer matrix approach was used to model the propagation of a forward travel-
ling wave incident upon the front face of an arbitrary front layer through an arbi-
trary number of layers. Attenuation coefficients were calculated using,

a) = af+b. 1

where the parameters, a and b were found by curve fitting the modelled data to
the experimental data. These parameters are then used to produce modelled data
for differing thicknesses of the same material. Figure 3 compares the modelled
and experimental spectra for polypropylene. Table 1 summarises the velocity and
attenuation values determined from the experimental and modelling programme.

5 Conclusions

A new method is described that enables ultrasonic material characterisation to be
performed in the 40-200 kHz range. The study shows material discrimination is
possible based on both temporal and spectral results. Transformation into the spec-
tral domain and using small increments between frequency bins enables a thick-
ness resolution of a far smaller length than the wavelengths of the propagating
sound. This approach has potential applications in areas such as NDT & E, medi-
cal physics, and geophysics, where improved resolution is sought using lower fre-
quencies to overcome the problem of highly attenuating media.
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Figure 1: Experimental set-up showing the testing
layout and instrumentation-transducer connections.

Figure 2: Temporal lin-
ear FM signals with fre-
quency band 40 — 200
kHz. a.
through water with no
target [Water];
water with 40 mm thick

Transmitted

through

targets of polypropylene
[PP], polyvinylchloride
[PVC] and brass [Brass].
b. Echo reflection signals
from PP, PVC and brass
targets.

Figure 3: Experimental
(black  diamonds)
modelled (grey
spectra for polypropylene

and

lines)

targets of various thick-
nesses, obtained using the
linear FM chirp; traces
are offset by the values
shown in brackets.

Material Sound velocity (ms~*) Attenuation coefficients (Npm~'Hz ')

a b
PP 2520 =20 (82+3)x10° (=73 +£7)x10°®
PVC 2320 =20 (30 +3) x 10 (15+7)x 10
Brass 4560 + 20 (6+3)x10°° (68 +7) x 107

Table 1: Ultrasonic velocities and attenuation coefficients determined for single layer materials.
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A multi-frequency, model based method for
sizing cracksin an elastic solid.

Laura Cunningham andinthony J. Mulholland

Abstract In this paper a model based method is presented for sizing cracks within
an elastic solid. This method is derived from the Kirchhoff model which is a high
frequency approximation to the scattering of a linear elastic wave from an ellipsoid
within a homogeneous medium. This multi-frequency method provides a formula
which relates the crack size to the maximum eigenvalue of the associated scattering
matrix as extracted from the model. To illustrate the method, scattering matrices are
extracted from finite element simulated data recorded by an ultrasonic array from a
homogeneous medium which contains a crack.

1 Introduction

Ultrasonic arrays are used extensively to inspect safety critical infrastructures for
defects, such as cracks [2]. There are several image processing techniques [1]-[4]
which can be used to detect and charactise defects within elastic solids, however
these methods are subjective when estimating the crack size (often relying on an
empirical thresholding of a point spread function). In this paper a mathematical
model is used to present an objective method for sizing cracks within an elastic
solid.

2 Kirchhoff model and scattering matrices

The Kirchhoff model [5] is used here to provide a high frequency approximation to
the scattering of an elastic wave from an object in a homogeneous medium. The sig-
nals scattered from a crack in the host material are then represented in the frequency
domain by scattering matrices, which are a function of the incident and scattered
waves. The Kirchhoff model is derived using a full aperture, circular array; however

Laura Cunningham
University of Strathclyde, 26 Richmond StreeiGlasgow, UK, G1 1XH e-mail:
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in this work an approximation to a linear, limited aperture array is used. From ob-
servations on the nature of the scattering matrices that arise from ellipsoidal cracks
and limited aperture transmit/receive directions the scattering matrix can be approx-
imated as a symmetric Toeplitz matrix. Here the row where the maximum of a scat-
tering matrix occurs will be used to create a Toeplitz approximatipnwhich is

given by
2\/1— Ay2/A(L+2u(1—y2 A A
AT (Yp) = pZZ(/Z)Ep — AL;/)( yp))Jl (271& (yp - 2}'))7 (1)

wherea = a/A is crack radius over wavelength,is the wavespeed in the host
material, p is the host material density; is a Bessel function of the first kind,

Yp is thej-axis component of the unit vector associated with array element with
index p, Ay is the pitch between array elements ang are the Lard coefficients.

We then derive an approximation to the maximum eigenvalyg of this Toeplitz
approximation to the scattering matrix. This maximum eigenvalue is approximated
using an upper bound [6§iz, which is given by

O = (AT)1-W @
where(At)1 = ((Ar)11,|(Ar)12

wj(N) = Zcos<LNllj+2> ®3)

T-1

yeens |(AT)1,N|)1 W= (1,W27...Wn) and

whereN is the number of array elements. Approximations e to the Bessel
function within (Ar); from equation (1), followed by Taylor series approximations
in order to extract the parametarfrom equation (2) to obtain an explicit expres-
sion relatinga™to the maximum eigenvalue from the scattering matrix. The final
approximation tagg is

os(8) = (A+S5)a+ 58 + Q(4) cos(p(a) — p(4))
+0 (max{e,es,es, 65} + max{a,es}) 4)

whereA, S, S, Q, p and g are functions of the depth of the craak,the length of
the ultrasonic array,and the number of elements in the arnsly,

3 Resultsfrom simulated data

In this section, the method outlined in Section 2 is applied to finite element simu-
lated data which simulates the scattering from a crack of length 5ma2(&mm)

within a homogeneous medium. The maximum eigenvalues associated with each
scattering matrix from the simulated data across a range of frequencies are com-
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pared with those calculated directly from tegchhoff model. The scattering ma-
trices from the simulated data and from the model are normalised with respect to the
I-norm to allow the signatures of each to be compared as crack ragiasq fre-
quency,f are varied. Lets( f) denote the maximum eigenvalue from the simulated
data associated with the normalised scattering matrix at a fixed frequerey let

ok (a, f) denote the maximum eigenvalue from the Kirchhoff model at a frequency
f and for a crack of radiua. Figure 1 (a) shows the plot ofs (blue line) across the
bandwidth of the ultrasound transducer array §6- 2.25MHz) and compares this
with gk from the model for different values of crack radii, This plot shows that
os(f) compares well withok (a, f) for crack radii between 2mm and 2.5mm. The
difference between the model and the simulated data can then be quantified via

D(a) = [los(f) —ak(a, f)][2- ()

Figure 1 (b) plot®(a), as the crack radius, is varied within the model and shows

BN W s o N ®

=)
[

7S08 1 12 14 16 18 2 22 2 3 4
Frequency (MHz) a(mm)

@ (b)

Fig. 1: Figure (a) shows the maximum eigenvalag(f), from the scattering matrices extracted
from the simulated data (thick blue line) as a function of frequency and compares this with the
maximum eigenvaluegk (a, ) from the scattering matrices determined using the Kirchhoff model
for different crack radii. Figure (b) quantifies this difference Dig) in equation (5).

a clear minimum foa = 2.2mm.

4 Senditivity Analysis

The expression given bjog/d4 x &/ g provides a relative measure of how sensi-
tive og is to changes in the crack size over the waveleagihhis provides a guide
as to how useful this method will be in practice in recovering the crack size from a
given maximum eigenvalue (the so called inverse problem).

Figure 2 shows this relative error adgs"varied and shows that far< 0.6 the
relative derivative is close to one which illustrates that changes iare sensitive
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Fig. 2 The relative derivative
of the maximum eigenvalue,
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a function ofa; all other
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to changes ira."This is encouraging as it indicates that this crack sizing method is
sensitive to changes iog for subwavelength cracks.

5 Conclusion

A multi-frequency, model-based crack sizing method has been developed which
relates the radius of a crack within an elastic solid to the maximum eigenvalue from a
scattering matrix. An analytical expression has been derived relating the crack radius
to this maximum eigenvalue which allows the ability of the crack sizing method to
be assessed. The method was successfully applied to finite element simulated data
from a homogeneous medium with a crack inclusion.
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Array imaging of austenitic welds by measuring
weld material map

Michael Lowe and Zheng Fan

Abstract

It is difficult to inspect for defects in austenitic welds ultrasonically due to com-
plicated material properties inside the weld. Weld microstructures typically lead to
weld stiffnesses that are both anisotropic and inhomogeneous, so that ultrasonic
waves tend to deviate and scatter. A weld performance map is commonly used to
describe how the material properties vary throughout the weld, and this idea has
been applied to wave propagation models. In this work, we have developed a non-
destructive method to measure this map using ultrasonic arrays. A material model
(previously published by others) with a small number of parameters has been ap-
plied to describe the weld performance map. It uses the information of the welding
procedure and rules for crystalline growth to predict the orientations, therefore it
has a good physical foundation. An inverse model has then been developed to
measure the weld performance map based on the matching of predictions by the
ray tracing method to selected experimental array measurements. The process is
validated by both finite element models and experiments. The results have been
applied to correct array images to compensate for deviations of the ultrasonic rays.

Ultrasonic array

Weld material

| I |
-

Array image of crack : o -
/ -
— -
A
-

\ Oy
7
’/

\. Crack\ . s

-

Parent material

A

Limited access

Figure 1. Illustration of error in ultrasonic array imaging when the imaging is per-
formed through inhomogeneous weld material.
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Figure 2. Experimental measurements to obtain data for the inversion calculation
to find the weld material map.
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Figure 3. Confirmation of inversion methodology: macrograph of weld (left) and
weld map obtained by inversion of ultrasonic measurements (right). NB this step
is only performed for the validation of the research; destructive examination is not
required in the deployment of the method.
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Figure 4. Example of deployment of the method. Image on left obtained using
normal array imaging, showing incorrect location of a side-drilled hole. Image on
right shows the correction of the location to its true position by the new method.

European Research Network, Eighth Meeting, Gregynog, 2014. 114


marc
Nouveau tampon


Spatially resolved acoustic spectroscopy: a laser
ultrasonic technique for materials
characterisation

Wenqi Li, Steve Sharples

Abstract Material characteristics such as strength, stiffness and fracture resistance
are strongly related to the underlying microstructure. In order to predict the me-
chanical behaviour of industrial materials such as titanium, nickel and their alloys,
detailed knowledge about their texture is required. A robust measurement tool is
introduced which can be used to determine the crystallographic orientation of a
material. This is achieved by using a laser ultrasonic technique spatially resolved
acoustic spectroscopy (SRAS) combined with a numerical surface acoustic wave
(SAW) velocity model. The SRAS technique can be used to obtain SAW velocity
information on the local area where the waves are generated. There are two ways
to implement the technique; in both methods the SAW excitation pattern is gen-
erated by projecting a grating pattern of laser light. By varying the frequency by
using a broadband laser in combination with a fixed grating, the local velocity v
can be calculated, through v = f where f is the frequency and is the grating pe-
riod. The model predicts the SAW velocity from the material’s elastic constants; a
search algorithm termed the overlap function is used to compare the SRAS data to
the model to determine the crystallographic orientation. We examined a range of
materials commonly used for industry. Comparisons between SRAS and electron
backscattered diffraction are presented. This is an innovative and all-purpose NDT
technique for materials manufacture monitoring and quality control.
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Fig. 1 Comparison between EBSD (left) and SRAS (right) of an Inconel sample.

European Research Network, Eighth Meeting, Gregynog, 2014. 116

30



marc
Nouveau tampon


Ultrasonic Characterisation of Crack-Like
Defects from Scattering Matrices

Long Bai, Alexander Velichko and Bruce W. Drinkwater

Abstract A novel approach for the characterisation of cracks with subwavelength
dimensions has been proposed. The crack length and orientation angle are deter-
mined by measuring the similarity of the scattering matrix of the target defect and
those of reference cracks. The similarity is calculated in terms of the Pearson cor-
relation coefficient, and when there are multiple peaks in the correlation image,
structural similarity index is used to distinguish between them. In addition, scatter-
ing matrix with high level of measurement noise can be correctly characterised by
the application of the principal component analysis to the noisy data.

1 Introduction

Crack-like defects form an important type of target defects in non-destructive evalu-
ation [1], and accurate characterisation of them remains a challenge at the moment,
particularly for small cracks and inclined cracks. Previous work on the characterisa-
tion of small cracks includes vector-TFM (VTFM) [2] and sizing algorithms based
on the scattering matrix [3, 4]. However, sizing was not considered in VTFM, and
scattering-matrix-based algorithms could only work when specular reflection is in-
cluded in the scattering matrix.

Due to the finite aperture of ultrasonic array, the incident and scattering angles
are limited in the extracted scattering matrix. Figure 1 shows the geometry of mea-
surement configuration for the extraction of scattering matrix from simulated array

Long Bai - Alexander Velichko - Bruce W. Drinkwater
Department of Mechanical Engineering, University Walk, University of Bristol, Bristol BS8 1TR,
UK, e-mail: Ib13340@bristol.ac.uk
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data. The angular coverage of the defect is determined by array aperture size and
defect location. Figure 2(a) and (b) show the magnitude of scattering matrices (at
5MHz) of 1.00mm (0.791), 0°, and 1.20mm (0.951), -70° (measured anticlockwise)
cracks, respectively, which are contaminated by 20% random zero-mean Gaussian
measurement noise. The relative noise level, ns is defined with respect to the peak
magnitude Ap, of the scattering matrix of 1.00mm, 0° crack:

ne = -2 x 100%, ()

where W, represents the standard deviation of the random noise. In this paper, crack-
like defect characterisation based on the scattering matrices as shown in Fig. 2 is
studied.

2 Methodology and preliminary results

The first step of the proposed approach is to form the database which consists of s-
cattering matrices of the reference cracks. The reference cracks have lengths ranging
from 0.2mm (0.164) to 2mm (1.6A) (in 0.05mm interval), and orientation angles of
-85° to 90° (in 5° interval). Before measuring the similarity of the scattering ma-
trices, principal component analysis (PCA) [5] is applied to the noise data as the
de-noising procedure, where the reference cracks serve as the training set [5]. Fig-
ure 3(a) and (b) show the de-noised scattering matrices that are shown in Fig. 2(a)
and (b), respectively.

Pearson correlation coefficient [6] is calculated as the similarity measure. Figure
4(a) and (b) are the correlation images, which show the correlation coefficients cal-
culated between the de-noised scattering matrices and those of the reference cracks.
The peak in Fig. 4(a) represents the found match, and the length and orientation an-
gle of the crack have been precisely determined by the correlation coefficient metric.

e Array

[el T [ T T T,0-T2]

20 mm

Crack (2)
Crack (1)

Fig. 1 Geometry of scattering matrix measurement
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Fig. 3 Scattering matrices (de-noised)

For the correlation image shown in Fig. 4(b), there are three peaks that are at dif-
ferent locations and have similar values. To distinguish between these peaks, mean
structural similarity index (MSSIM) [7] can be calculated and used as the second
similarity metric. The correlation coefficient and MSSIM associated with peaks 1-3
are specified in Table 1. It can be seen that although the three peaks have similar
values in terms of correlation coefficient , peak 2 is the best match because of its
largest MSSIM value.

In conclusion, if there is only one peak in the correlation image, it is found as
the final match. If there are more than one peaks, they should be distinguished by
MSSIM, and the found match is assigned to the peak having the maximum MSSIM
among the candidates. This algorithm has been validated by various simulation and
experimental cases, and more details will be reported in the final paper.
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(a) 1.00mm (0.794), 0° crack (b) 1.20mm (0.954), -70° crack

Fig. 4 Correlation images calculated for de-noised scattering matrices

Table 1 Correlation coefficient and MSSIM of peaks 1-3 in Fig. 4(b)

Reference crack correlation coefficient MSSIM
peak 1 (1.65mm, -25°) 0.9384 0.3150
peak 2 (1.25mm, -70°) 0.9366 0.4550
peak 3 (2.00mm, -75°) 0.8691 0.3164
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The Aeroacoustics of the Owl

Nigel Peake, DAMTP, University of Cambridge

Many (but not all) species of owl can hunt in acoustic stealth. This requires vir-
tually silent flight in the frequency ranges over which both its prey’s and its
own auditory systems are most sensitive (to avoid alerting the prey to the owl’s
approach, and so that the owl can detect the prey audibly above its own self
noise, respectively). The question of precisely how the owl actually manages to
fly so quietly has remained open, but it has long been appreciated that owls
which need to hunt silently possess two unique features, which are not found on
any other bird, and indeed are not even found on owls which do not need to hunt
silently (e.g small owls which feed on insects, or Fish Owls). First, the micro-
structure of the feathers on the upper wing surface is exceedingly complex,
with an array of hairs and barbs which form a thick canopy just above the
nominal wing surface. Second, the wing trailing edge possesses a small flexible
and porous fringe which does not seem to have an obvious aerodynamic func-
tion.

The research I am going to describe in this talk is part of an ongoing theoretical
(at Cambridge, Lehigh University and Florida Atlantic University) and experi-
mental (at Virginia Tech.) program, with the aims of first attempting to under-
stand how the two unique owl features described above actually work to control
the noise, and then second of designing an owl-inspired treatment which can be
used to significantly reduce aerodynamic noise generation in an engineering
context. The application we have in mind initially is to noise generation by on-
shore wind turbines. The progam is funded by the US Office of Naval Research.
When considering possible noise sources for a bird in flight, or a wind turbine,
one immediately thinks of the noise produced by the turbulent boundary layer
flowing over the wing trailing edge: this noise scales with the flow Mach
number to the power 5, which is louder than the power 6 scaling of rough-
surface noise, or the power 8 scaling of turbulence in free space. Our hypothe-
sis is that the owl has been able to eliminate this trailing-edge noise, using a
combination of the feather canopy and the trailing-edge fringe.

Turning to specifics, I will describe mathematical analysis of the following
problems: (i) noise generation by turbulence close to a semi-infinite elastic and
porous trailing edge, using scalar Wiener-Hopf; (ii) the effects of finite geome-
try on this noise generation, using matrix Wiener-Hopf; (iii) the possible role of
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shear sheltering on reducing the level of surface pressure fluctuations. I will
also describe results from the experiments.

The material in this talk is joint work of NP & Conor Daly (Cambridge), Justin
Jaworski (Lehigh), Stewart Glegg (Florida Atlantic), and Ian Clark, Nathan Alex-
ander & William Devenport (Virigina Tech.).
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Remarks for non destructive testing in a
bi-material based on Love waves

Philippe Destuynder and Caroline Fabre

Abstract Let us consider an infinite strip made of two different materials. The back-
ground problem considered, consists in detecting the presence of a crack at the in-
terface between the two media using Love waves [1]. First of all, an energetical
invariant in the wave equation is derived from domain derivative methods. It gives
indications on the existence of a crack between two transverse observation lines.
The localisation is more difficult and could be deduced from an optimal control
strategy which requires a mathematical model for simulating the Love waves which
propagate along the strip. The main advantage would be to explore longer domains
compared to the standard ultrasonic method which requires to move step by step
an actuator transversally to the boundary between the two media. A mathematical
model is therefore introduced. In order to restrict the simulation to a finite domain,
one can use transparent boundary conditions on two transverse lines to the inter-
face between the two media. Even in the case of simple Love waves (compared to
Lamb’s waves [5]), a new difficulty appears because of a singularity which is not
physical and which pollutes the evaluation of the energetical invariant. The goal of
this presentation is to examine the different aspects of this strategy for non destruc-
tive testing which has been suggested by several authors [2] [3], [4]. The model
which is used in this presentation is very much simplified compared to reality, but it
enables to point out the possibilities and the difficulties of the non destructive testing
method based on Love waves.
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1 Introduction

The domain that we consider in this simple example, is represented on figure 1
where several notations are specified. The propagation of antiplan waves is mod-
elled by the following system of equations where the antiplan displacement « is the
unknown (2 = Q, UL;UQ_):

21/[
ou . 2 _ .
e div(¢*Vu) = f, in 2x]0,T],
du
E =0 on {F+ ur- UE+ UE,}X](),T[,
5 5 ey
u u
5 9, =0 on {I[LUIL;}x]0,T7,
du .
u(x,0) = up(x) and E(x,O) =u;(x) in Q.
)
0 I+
Ie Neighbourhoods of the crack tipsAandB I
L2,
0 I ﬁ\ It mB X
N—’
S, e
CA I Cg

Crack

Fig. 1 The domain on which the antiplane model is set

The existence, uniqueness and time regularity of a solution are almost standard as-
suming that the initial conditions and the right hand side are smooth enough [6].

The space regularity is not true for two reasons. One is the presence of the crack tips
(points A and B); the second one is the artificial singularities which appear on the
two boundaries I, and I at the intersection with the separation line (say I; on figure
1). The last phenomenon should be eliminated from the solution because it has no
physical meaning and pollutes the crack detection criterion suggested in this paper.
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The use of Love waves [1] (by selecting them from the initial conditions or from
the right hand side of the model) has three advantages described in the caption of
figure 2.

Fig. 2 Propagation phe-
nomenon of Love waves.
e They propagate far with-
out a loss of energy. e Their ) Hardest media
energy is mainly localized in Interior waves
the weak part of the structure

and therefore their influence

is mainly measured in the

corresponding part of I, and

I;. e They propagate quite fast

(for a slim strip), following a M/V\ Love's waves Softest media
broken trajectory (see figure

2) in the weak media detect-
ing therefore the presence of
the crack.

Interface

Propagation

2 The detection criterion

Using an energetical invariant deduced from domain derivative technics, one can
prove the following result which leads to the definition of a crack detection criterion
and even of a localisation strategy.

Theorem 1. Let us consider the Fourier transform @i of u. Let Ky and Kp the two
stress intensity factors for the two crack tips and let us assume for instance that the
function f is
2(sin(@yt) — sin( o, 1)
flxt) = )n(x)

t
where M is a smooth function with support in Q_ or L. Thus one has:

def

1 R on 871 . T A~ o Py
(204 S5 Plvie | Shan=E (e (R PHE ) G (0,0.0)

2Jrur;
Hence, if G > 0, Vo € w, — oy, the existence of a crack is equivalent to G > 0.

Finally the following optimal control problem is suggested in order to localize the
crack (assuming that there is only one, and that @; and w, are correctly chosen):

. [ € 5 5
min G((D,ll?lz)dw-l-i[ll +(h—1) ] 2)

I, Joy
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3 The artificial singularity due to the change of wave velocities

The boundary condition which should be satisfied by u near the point O (interface
between . and Q_ on I;) are: A local computation enables one to prove that the

L2+
10
Fig. 3 On I; one has: — " X2

c ot
which is discontinuous and s
Frontiére I
thus 22 is also discontinuous. o — et
This implies that u can’t have Frontiére T ’|\ X
the same regularity as inside 2 !

the domain Q. .
Frontiere I'e -

Q—

singularity is a Dilog one. This strange phenomenon should be controled because it
doesn’t correspond to a physical one. Because it is known, and it can be introduced
in the numerical scheme and a filttering process is used (projection of u on the
orthogonal space to the singularity) in order to cancel it.

4 Description of the talk

The goal of this presentation would be to describe in more details the strategy de-
scribed here and few numerical simulations will illustrate the foundation of the
method. After a brief discussion on the Love waves, the invariant of the wave equa-
tion which is at the origin of the detection criterion will be analyzed. The optimal
control model is handled through a gradient algorithm and it rests on the definition
of an adjoint state variable. The non-physical singularities which appear on the two
extrem boundaries will be discussed and their numerical effect shown on examples.
Finally the numerical model and therefore the non destructive testing strategy will
be explained.
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Exact transparent boundary conditions for
diffraction problems in some anisotropic plates

V. Baronian2, A.S. Bonnet-Ben Dhial, S. Fliss!, A. Tonnoir"*

Abstract In this paper, we propose an original method for constructing transparent
boundary conditions in some anisotropic plates for the time-harmonic diffraction
problem by a lineic defect. We suppose that the anisotropy enables to decouple the
computation of the SH and the P-SV modes in the safe part of the plate. Then, we
construct adapted impedance operators from which we derive original transparent
conditions on artificial boundaries.

1 Introduction

The use of guided waves in non destructive testing (see [2]) presents many advan-
tages that motivate their study. For instance, guided waves allow to control struc-
tures on wide distances and in inaccessible areas. However, the complexity of the
experimental results requires accurate simulation tools to interpret them. The usual
configuration is to consider an infinite and perfectly uniform waveguide except in
a bounded area that contains a defect and we want to compute the diffraction of an
incident wave by this localized defect.

More specifically, we are interested in the time-harmonic diffraction problem in
an anisotropic elastic plate of an incident mode by an invariant (in one direction)
defect (see figure 1). This particular problem has been studied in [5] and can be
formulated as a 2D problem, for a vectorial unknown with 3 components. The tech-
nique developed consists in computing the modes thanks to the SAFE method (see
[1, 3]) and derive from them transparent conditions (denoted by 7BC) that enable
to restrict the computational domain to a bounded area around the cross-section of
the defect. The drawback of this method is that, for general anisotropy, there is no
bi-orthogonality relation between the outgoing modes as the Fraser’s relation for
orthotropic media (see [1]). Therefore, the projection of the solution on the family
of modes, which is required to compute the TBC, is not obvious and implies the
inversion of a (possibly ill-conditioned) Gram matrix associated to the modes.

In our work, we propose to focus on particular cases of anisotropic plates for
which we can decouple the calculations (in the uniform part) of the modes polarized
in the (x1,x3) plane (denoted by P-SV modes), and of the shear modes polarized in
x; (denoted by SH modes). The SH modes can be analytically obtained and verify an

1 POEMS (UMR 7231 CNRS-ENSTA-INRIA)
- *Email: antoine.tonnoir @ensta.fr
-2 CEA, LIST, Gif-sur-Yvette, France
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original orthogonality relation on oblique boundaries. Besides, we need to use the
SAFE method to numerically compute the P-SV modes. Classically, these modes
verify a bi-orthogonality relation with the adjoint basis but this relation involves the
stress components of the modes. To get rid of this difficulty, we propose to construct
TBC on separate boundaries so that we can eliminate the stress parts.

2 Decoupling of SH and P-SV waves

We consider a homogeneous anisotropic elastic plate with free boundary conditions
occupying the domain = R* x [—h, h]. In time harmonic regime of pulsation ®,
the displacement field u verifies the following classical equations:

divo(u)+o’pu=0in Q, |

o(u).v=0 on 082, M
where v denotes the outgoing normal. The stress o (u) is related to the displacement
field by Hooke’s law o(u) = Ce(u), where € and C are the classical strain and
elasticity tensors. Classically, if we consider solutions u = u(x1,x3) independent of
X3, the problem (1) reduces to a 2D problem with 3 components. Thanks to the
invariance, we prove by direct calculations that the components u, and (u;,u3) are
decoupled (corresponding respectively to the SH and P-SV waves), providing that
the elasticity tensor has the following form:

Cii Cp Cz 0 Ci5 0
Cip Cn C3 Gy G5 Cy
Cs3 Cp3 Gz 0 G5 0
Cs Cs G5 0 GCss 0
0 Cx 0 Ci4 0 Cg

(@)

We consider the diffraction by a defect which is invariant in the direction x, of
an incident mode propagating in the direction x; normal to the defect. The final
diffraction problem is still a 2D problem with 3 components, which may be coupled
in the perturbed area corresponding to the cross-section of the defect.

3 Modes and TBC for SH waves

In that particular case of anisotropy (2), the transverse component u(x;,x3) veri-
fies:

VI(S$,Vw)+w*uy =0, in - Rx[-hh], . [ Ce6 Ca
SHVu,.v =0 on R x {x3 = th}, with  $2 = Ca6 Caq )’ 3
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Title Suppressed Due to Excessive Length 3

where V = (9, dx,)". Looking directly for the modes ua (x1,x3) = ¢ (x3)e’P*1 leads
to a quadratic eigenvalue problem for the eigenvalue . A better approach consists

in using the change of variables (X,X3) = (x] + 0tx3,x3), where o = —%:Z. Then,
the equations (3) become:
’ (92112 (92112 2
C—— +Cu——+0w=0,in Rx|[—hh|, 4
axz Teuy 2 2 [—h.h] “)

where C' = Ce6 + 20Cy6 + >Cy4 and the boundary conditions simply reduce to
dyu; = 0. Let us emphasize that the geometry is preserved by this change of vari-
ables. The calculation of modes is then classical and the two families of rightgoing
and leftgoing modes (denoted with + and —) are given by the following formulas:

SHF (x1,x3) = e P105) cog(y (x5 + 1)), with 5
o) (s ) [T
.Bk - Vod .

An important property is that the two families of modes verify an orthogonality
relation on oblique boundaries X, = {x; + ax3 = a} for any real a. So, knowing
the traces of up |5, on X1, the outgoing solutions in {+(x; + ax3) > a} are simply
given by

w =Y SH (wls.,,SH )y, - (6)

k>0

From these analytical representations of the solution, we deduce the impedance op-
erators sz'E that map the trace uz|x, , to the normal trace dyuy |z, on X1,

TZi (u2|2¢a) = Z iﬁk (u2|Eia7SHljc)zi,, SHki|Eia’
k>0

and we can derive the TBC: dyup = Tzi(u2| £.,)onZi,.

4 Modes and TBC for P-SV waves

The calculation of the P-SV modes requires to solve a coupled problem in u; and
u3. Using the ideas developed in [1, 4], this coupled problem can be formulated as
an evolution problem in xi:

0
371(“1’ us, ty, ) = (uy, s, ty, t3) (7

where t = o(u) -n, n = (1,0)", and & is a differential operator in x3. We are led to
solve the linear eigenvalues problem ifip = o7 p in B, where P(x1,x3) = P p(x3)
and P = (uy, us, ty, t3)t.
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For general anisotropy, we do not have a bi-orthogonality relation between the
outgoing modes (Pki) ¢ as in orthotropic media (see [1]). Therefore, we propose to
use the adjoint modes (P,); which are the eigenfunctions of the adjoint operator .7*,
and which verify the classical bi-orthogonality relation (Pki,P[*) = &, on vertical
boundaries I; = {x; = a}. Then, knowing the traces and the normal stresses on I,
the solutions in {£x; > a} can be expanded as

(0, = ¥ B (Pl B, = X B [0l %), + (tr 7)),
k>0 k>0

where %, and .7, denote respectively the displacement and the stress parts of P;.
To derive TBC from these formulas, the idea is to replace the knowledge of the
normal stress t on Iy, by the knowledge of u in the boxes BljE delimited by the
boundaries I, and I;, where [ = b — a. Indeed, using the Green’s formula inside
Bli and a lifting in Bli of P, denoted by . (P} ), that vanishes on I'.;,, we get

(tr, Z)r, :/Bi —0’u-Z(F)+o(u): e(L(F)), (®)

l

where we recall that div 6(u) = —@?u, due to the equations verified by u. There-
fore, we can get the impedance operators Tlg that map u in Bli to the normal stresses
t on the boundaries I}, and derive the TBC.

Fig. 1 Geometry of a typical configuration and notations.
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Nonsmooth modal analysis of vibratory systems
undergoing purely elastic impacts

Stéphane JUNCA and Mathias LEGRAND

Abstract The framework of nonlinear normal modes (NNM) [3, 4] is extremely pow-
erful to investigate the nonlinear vibrations of mechanical systems. An autonomous
thin vibrating rod in contact against a frictionless rigid foundation [5] is investigated
in the form of a N-dof harmonic oscillator subjected to a purely elastic impact rule
which preserves the total energy. We show that this system features a continuous set
of periodic orbits supported by non-smooth sub-manifolds in the phase portrait.

1 Introduction

This work explores the free vibration of a one-dimensional oscillating rod undergoing
rigid unilateral contact conditions. This is approximated through a N-dof spring-
mass formulation together with a purely elastic impact rule. The corresponding
free periodic solutions are targeted from the modal analysis standpoint: we study
mathematically their existence as well as their stability, and compute them numeri-
cally. This topic has many applications in Mechanical Engineering where unilateral
contact occurrences between mechanical components are becoming common due
to the design of more flexible and lighter structures together with tighter operating
clearances [5].

The mathematical theory behind initial value problems involving unilateral contact
condition is sophisticated [9, 11, 1, 2]. Focusing on periodic solutions with one impact
per period simplifies the formulation and a 2-dof system is investigated in [7] where
NNM are explicitly calculated. Pilipchuck studied a N-dof system with symmetric
barriers [8] through an ingenious and nonsmooth change of variables. Instead, we

Stéphane JUNCA, Université de Nice Sophia-Antipolis & INRIA, Labo. JAD (UMR CNRS 6621)
& Team COFFEE, Parc Valrose, 06108 Nice, France. e-mail: junca@unice.fr
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make use of a return map [7] and prove the existence of NNM near grazing contact [8].
The nonsmooth invariant manifolds supporting these NNM are also computed.

2 Models

2.1 One-dimensional continuous formulation

The system of interest is depicted in Fig. 1: it is a thin rode of length L and cross-
sectional area A subjected to Signorini unilateral contact conditions at x = L. The
main unknown is the displacement u(x,7). It is governed by an initial-boundary value

I u(x,t)

|0 ® 0 0 0 0 — 80

L

Fig. 1 Thin rode in contact against a rigid foundation and its discretization in space

formulation which takes the following form:

poyu—Edwu=0, Vxe€l0,L] (1
u(0,) =0 2)
u(L,t) <go : (u(L,t)—go)-o(L,t)=0 ; o(Lt)<0 3

where 6(L,t) = EAdu(L,t); E is Young’s modulus from linear elasticity considera-
tions. This problem is mathematically studied in [10] and numerically approximated
in [6]. The total energy [10] is preserved:

1 L
E0) =5 [ [p(0u? +E@u?] dx = E(0) )

Nonlinear normal modes are defined by continuous families of periodic solutions for
which initial data are replaced by periodicity conditions in time [5]. In the present
work, a simplified discrete version of the problem above is explored where the
Signorini conditions are advantageously replaced by a purely elastic impact law.

2.2 Spring-mass discretization

The rod is approximated in space by a N-dof spring-mass system and the governing
equations become
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Mii(r) + Ku(t) =BT A(r) ©)
uy(t)<d : A<0 ;5 (d—un()A) =0 ©)

We study solutions where conditions (6) and the conservation of the total energy are
simplified by the impact reflexion rule:

un(t)=d = iy (t) = —iy(t) @)

3 Nonsmooth invariant manifold

Near the gazing contact, we can compute periodic solutions with increasing energy:
figure 2 displays the second mode of vibration of a 3-dof spring-mass system reflect-
ing the rod’s dynamics. When unilateral contact is not activated, ie for small modal
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Fig. 2 Cross-section in the phase portrait of the invariant manifold supporting the second mode
of vibration of a 3-dof spring-mass system undergoing one impact per period. Left: (uy, iz, u3);
right: (u, 12, 113). Black shows the linear behavior while blue shows the nonlinear behavior. Grazing
occurs at the boundary separating the two behaviors.

amplitudes, the system behaves linearly and the sub-manifold is flat (black portion in
figure 2). On the contrary, when modal amplitudes are sufficiently large to activate
unilateral contact, the sub-manifold becomes non-differentiable in displacement and
even discontinuous in velocity (blue portion in figure 2). Other periodic solutions are
expected with more than one impact per period, for instance.
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Nonlinear elasticity and slow dynamics: physical
and numerical modeling

N. Favrie and B. Lombard and C. Payan

Abstract Longitudinal vibrations in bar sedimentary rocks or damaged materials are
examined. These materials exhibit time-dependent properties where two processes
coexist: a fast process at the frequency of the excitation, governed by nonlinear
elasticity; a slow process, governed by the evolution of defects. A “soft-ratchet”
model is proposed to describe the experimental observations. The properties of this
model are analysed. A time-domain numerical modeling is also developed.

1 Introduction

Longitudinal vibrational experiments in sedimentary rocks or in concrete reveal that
two radically-different dynamics coexist [1, 2, 7]. First, a “fast” elastic dynamics
occurs with a time scale ruled by the frequency of the excitation. Second, a “’slow”
dynamics governs the relaxation of physical parameters, such as the Young’s modu-
lus. Some phenomenological models have been proposed to describe such hysteretic
behaviors, for instance the Preisach-Mayergoyz model, but without any physical
foundation [4].

Here, we present a soft-ratchet” model initially introduced in [8] and physically
meaningfull. The softening/recovering of elastic modulus is related to the concen-
tration of defects that evolves dynamically with the applied stress. This relaxation
mechanisms is coupled to a law of nonlinear elasticity, for instance the widely-used
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Landau’s model [3]. Lastly, viscoelasticity is introduced in the model. Our contri-
bution is two-fold:

e improvement of the physical model. A non-physical feature of the soft-ratchet
model [8] is fixed. Moreover, the generalized Zener model introduced in this
paper is more realistic than the Stokes model in [8], and also better suited to
numerical resolution;

e construction of a numerical scheme. Analytical tools used in [8] were unable
to solve the full coupled system. On the contrary, we develop here a numerical
strategy that enables to solve the whole equations, in the time-domain.

The sketch of the paper is as follows. First, we introduce the physical model and
its basic features: evolution of defects, nonlinear elasticity, and attenuation. Second,
the evolution equations are written as a first-order system of partial differential equa-
tions, whose properties are stated. Third, the numerical method is introduced, based
on a splitting strategy. The hyperbolic step is solved by a Godunov scheme, whereas
the relaxation step is solved exactly. Fourth and last, numerical experiments show
that the experimental observations performed by Dynamic Acousto-Elastic Testing
are qualitatively recovered [5, 6].
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Reflection and transmission at the junction
between two sections of circular cylindrical shell

Ryan M Pullen and Jane B Lawrie

1 Introduction

Acoustic propagation in circular cylindrical shells has been extensively studied. A
wide range of model problems have been addressed including those involving shells
with ribs, bulk-heads or other stiffeners, the radiation of sound by finite shells and
scattering in coated pipes. A number of solution methods have been employed in-
cluding asymptotic methods, modal methods, the Wiener-Hopf technique and nu-
merical mode-matching. With the exception of the numerical approach, these meth-
ods are not easily extended to deal with problems involving closed waveguides with
an abrupt change in radius. For the two-dimensional case there is a well established
theory underpinning the existence and application of generalised orthogonality re-
lations. This has recently been extended to three-dimensional problems involving
ducts of rectangular cross-section, enabling mode-matching methods to be devel-
oped for ducting systems with flexible boundaries [1].

In this paper a prototype problem involving acoustic scattering in a circular cylin-
drical waveguide with abrupt change in radius is considered. The interior region of
the structure contains a compressible fluid of sound speed ¢ and density p whilst
the exterior region is in-vacuo. Harmonic time dependence, e~ s assumed with
@ = ck, where k is the fluid wavenumber, and the boundary value problem is non-
dimensionalised using k=, @~ as typical length and time scales. (Note: henceforth
an overbar indicates a dimensional quantity, so a = ka etc.) A generalised orthogo-
nality relation (OR) for the eigenmodes is presented and used to reduce the problem
to a system of equations which is truncated and solved numerically.
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2 The boundary value problem and its solution

The model geometry comprises two semi-infinite sections of thin, flexible shell
which occupy the regions r = a, z < 0 and r = b, z > 0 respectively of a cylindrical
polar co-ordinate system (r,0,z). The waveguide is closed by a rigid-plate which
occupies z =0, a < r < b. An axi-symmetric fluid-structure coupled mode propa-
gates in the positive z direction towards z = 0. It is appropriate to define velocity
potentials: ¢;(r,z) for z <0, 0 <r <aand ¢(r,z) for z >0, 0 < r < b. Both sat-
isfy the non-dimensionalised Helmholtz’s equation. The motion of the “left hand”
cylindrical shell is governed by the axi-symmetric Donnell-Mushtari equations [2]:

azzz M1+(iv/a)ar2z ¢1+l32141=0, r=a, z<0 (1)
—iTiva d; uy + 9.0 — uio, ¢1 +Ta*Bp/(pshk)pr =0, r=a,z<0 (2)

where u1(z) is the longitudinal component of the shell displacement,  is the shell
thickness and 8 = c/cy, 71 = 12/(h*k*a?), u = 71(a* 8% — 1) . Here v is Poisson’s
ratio, p; is the shell density and ¢; = {E/[ps(1 — v?)]}!/? (E is Young’s modulus)
is the sound speed within the shell wall. The boundary conditions for the shell lying
in z > 0 are obtained by replacing a, 71, u; and ¢; with b, T, up and ¢,.

At the junction between the two sections of duct, the non-dimensional pressure is
continuous, ie. ¢; = ¢, z=0, 0 < r < a. Further, the normal component of velocity
is continuous within the fluid and zero on the rigid plate. It is assumed the edges of
the shell are clamped to the rigid plate at z = 0. Thus, w; = w;; = u; = 0, where the
conditions are appliedat z=0,r=afor j=1andz=0, r=b for j =2.

The velocity potential ¢ (r,z) can be expressed as an eigenfunction expansion:

01(r,2) = Fido(yir)e™* + Y Apdo(yar)e ™, 0<r<a, <0 3)
n=0

where Jo(-) denotes the Bessel function of the first kind, ¥, = (1 —n2)'/2, F, =
[a/(anyCy)]'/? is the amplitude of the incident mode (chosen such that the incident
power is unity) and A,, n =0, 1,2,... are the reflection coefficients. Similarly:

$2(r,2) = Y Budo(Kur)e™, 0<r<b, >0 4)
n=0

where &, = (1—s2)"/2 and B,, n =0, 1,2,... are the transmission coefficients.
The quantities 11,, n =0,1,2... of (3) are the roots of K; (1) = 0 where

Ki(n)=uvn®+(n* =) {n* —u' - ak(va) /(¥ (va)]}, (5)
with y = (1—n12)"/2 and o = 1282p / (p;h*k?). Positive roots, +1,, are either pos-
itive real or have a positive imaginary part. They are ordered sequentially, real roots

first and then by increasing imaginary part. Hence, 1 is the largest real root. It is
assumed that no root is repeated. The quantities s,,, n =0, 1,2... of equation (4) are

European Research Network, Eighth Meeting, Gregynog, 2014. 138


marc
Nouveau tampon


the roots of K;(s) = 0 where K5 (s) is obtained from (5) on replacing 1, ¥, a, T; with
s, K, b, 7.
The generalised OR for a thin, flexible-walled, shell of radius r = a is

% / Jo(3ar)o (nr)rdr = SpnCi )
0

- - - TIVZﬁz a a
+{2 T (n%—ﬁz)(n,%—ﬁz)}y"h(% Jtnd1 (1),

with
_ Whi(ha)  d
2na(n3 — B?) dn

where O, is the Kronecker delta. The OR for the duct lying in z > 0 is identical in
structure and is obtained on replacing a, Ty, Ny, Yy, Cy With b, T2, s, K, Dj,.

On substituting (3) and (4) into the pressure condition, multiplying both sides by
oJo(Ymr)r/a, integrating over the range 0 < r < a and using (6), it is found that

Ki(n) ) )

N="Mn

n =

Ji (}/ma) E B, R,
A, =—-Fd E 2 E 8
w=—Fib+ T Bt o + (%0 —2)E> +a,§6 . ®
where E(-E, are constants and
a
Rmn:/o Jo(Ymr)Jo (6, 7)rdr. 9)

On using the edge conditions, it is found that Ey = 0 and

1 By jin Ry M YinJ1 (Yma .
Ej= A{zeﬂ,mmJl(wa S0y y BBty )}, j=12

m=0n=0 o
(10)
where A = ST+ 5082, Qj = S;—S;-1/(B*—n;,) with
o 2 ) 272 b
Z "’"7'”" W) 012, and S5 — y Kt (Knb)
n—0 T?m)’cm m=0 SmDim

On substituting (3) and (4) into the velocity condition, multiplying through by
oJo(K,7)r /b, integrating over 0 < r < b and using the appropriate OR:

_ OF MR KinJ1 (Kinb)

) MeRy E 2 0 o AnTnRum
B E —2)Es5 p — — _—
" bsuDy, * SmDpy { : + ﬂ2 ( " ) 5} b n;() SmDm
(12)
where E3-E5 are constants. In this case it is found that E4, = E5 = 0 and
E3 _ (04 Z F/nZR/meJI K-m Z Z nnn anmJl(Km ) (13)
bS3 SmDm bS3 m=0n— Sm m
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3 Numerical results and Discussion

The numerical results presented here are obtained by truncating equations (8) and
(12), and solving using 100 terms. The shell parameters are p; = 2700 kg m—3,
E=72x10""Nm=2, v =0.34, 1 = 0.002m whilst c = 343.5ms ™! and p = 1.2 kg
m~3. The non-dimensional reflected (&) and transmitted (&) powers are given by

N N
& =ao 'Y |A,)*Cuny and & =bo ' Y |B,|*Dysy, (14)
n=0 n=0

where N + 1 is the number of cut-on modes. For this model problem there are two
fundamental modes: the first (wavenumber 1) is essentially fluid-borne whilst the
second (wavenumber 1)1 ) is structure-borne. Either mode can be used as forcing; the
respective incident amplitudes are Fy and F. Figure 1 demonstrates that when the

10—
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0.6 F
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0.2

0 200 400 600 800
Fig. 1 Reflected (dashed) and transmitted (solid) powers for @ = 0.2m, b = 0.28m

incident mode is fluid-borne, despite a sharp dip at the first cut-on (=~ 745Hz), the
vast majority of the energy is transmitted. In contrast, when the incident mode is
structure-borne the power is entirely reflected. Figure 2 shows &7 and &, when the
radius of the left-hand (z < 0) duct is significantly reduced. In this case, for fluid-
borne forcing, much of the power is reflected at frequencies below the first cut-on
and there is a sharp inversion of &} and & at the first cut-on. Again, the power is
entirely reflected for structure-borne forcing.

0 200 400 600 SOOv 0 200 400 600 800
Fig. 2 Reflected (dashed) and transmitted (solid) powers for @ = 0.06m, b = 0.25m

References

1. J.B. Lawrie: On acoustic propagation in three-dimensional rectangular ducts with flexible
walls and porous linings, J. Acoust. Soc. Am., 131(3), 1890-1901, 2012.
2. M.C. Junger and D. Feit: Sound, structures, and their interaction, MIT Press, p. 216-218, 1972.

European Research Network, Eighth Meeting, Gregynog, 2014. 140


marc
Nouveau tampon


Low Mach number flow noise from a
two-dimensonal rough circular cylinder

David Nigro, I.D. Abrahams

Abstract The purpose of this work is to evaluate the effect of roughness on the
cross-flow noise around a circular cylinder with an application to towed array sonar
noise. It is shown that, for a low Mach number flow, it is characterized by a dipole
source involving the surface pressure. If the roughness is small compared to the
acoustic wavenumber, and if the surface pressure is statistically spatially homoge-
neous, the far-field pressure power spectral density (PPSD) is given by a discrete
convolution of the wall pressure power spectral density (WPPSD) with a filter func-
tion that is purely geometric. This filter function only involves the azimuthal Fourier
coefficients of the roughness shape function and its gradient, as well as the Green’s
function tailored to the smooth geometry.

1 Introduction

Roughness noise is of increasing interest in the aircraft industy as well as in the
underwater industry. Most of the models used in hydroacoustics assume a smooth
geometry. However, in practice, we cannot avoid some roughness during the indus-
trial manufacturing process. Therefore it is important to be able to quantify the effect
of roughness on the noise radiated by turbulent flows over objects. It has been shown
experimentally (for the rotating cylinder by Skudrzyk & Haddle [1] and the rotating
disk by Chanaud [2]) and theoretically over infinite geometries (for the infinite plate
by Glegg & Devenport [3]) that roughness noise is dipolar.

In this paper we will revisit the classical problem of the cross-flow noise around a
smooth circular cylinder to incorporate roughness effects. The smooth geometry has
been widely studied both experimentally and numerically over the past few decades

David Nigro
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[4] and it is well-known that, at low Mach numbers, the main contribution to the
radiated noise comes from the scattering of the fluctuating Reynolds stress tensor
by the cylinder and that this contribution is dipolar.

2 Lighthill’'s analogy

The compressible Navier—Stokes equations for a viscous fluid free of external forces
can be combined to give Lighthill’s analogy [5]

2 2T
<Dzid—>pi 0T 1)

c3 ot? c3 0x0x;

whereTij = (pViVj +0j+(p— cgp)dj) ~ povivj atlow Mach numbers. Physically
this analogy means that the turbulent motion of the fluid is equivalent to a volume
distribution of quadrupoles in a fluid otherwise at rest.

In some cases it is easier to work in the frequency domain, and this gives us an
inhomogeneous Helmholtz equation

. 1 07T
M +1R)P(X, @) = — = Uy 2
(FPH@Px.0) =~ 55 2)
wherekg = g This can hen be solved using a Green’s functi@ to obtain
9°G G
px.) = [Tz o 2y, V)~ PS5 ds) 3)

We can see from (3) that the solution is independent of the choice of the Green’s
function. A popular choice is based on the Green’s function tailored to the surface,

Gt, that satisfies%—(r;: =0on§, yielding
azq
Tij 4
/ 1] ayl ayj ) ( )

This choice allows us to avoid evaluating the surface integral at the price of con-
structing a tailored Green’s function, a task which can be very challenging for com-
plicated geometries.
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Noise

" Rough
Cylinder

Fig. 1 The acoustic pressure perturbation is radiated away from a region of turbulent flow created
by the 2D pugh circular cylinder of radiua+ & (0).

3 2D rough cylinder

3.1 Modd

The roughness is modelled as a pertubatéd®,), to a smooth cylinder of radiues

as shown in Fig. 1. It is considered small enough that it does not perturb the flow
too much i.e. the sources are the same as for the smooth cylinder. We will use the
Green'’s function, tailored to the smooth cylinder in (3) and keep only the linear
terms in&. Therefore we neglect the effect of roughness in the volume integral
as it can be shown that it is quadratic§nunder the assumptions we have made.
Therefore the effect of roughness is given by

@) == [ By, @)0G Xy, @) ndl ©)

3.2 Application

Using the Taylor expansion of the gradient of the tailored Green’s function and
projecting the integral onto the smooth geometry to highlight the effect of roughness
gives the far-field pressure

kOrx+
2ko e n,Zm PLa(0

e M6+ 3) (koath<koa>zn+m cm<koa>fn‘i>m>,

Pr(x, w) ~
(6)

X
?Ms

wherex = (ry, 6y) is the observer’s position in polar coordinatps, are the Fourier
coefficients of the pressure fluctuations on the smooth cyliiBiegndC,, are co-
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efficientsdepending on the geometry of the smooth cylinéé,ﬁn andgrfﬁn are the
Fourier coefficients of the shape function and its gradient, respectivelygﬂ}{e

have been normalised by the r.m.s. of the roughness héigahd theféﬂn nor-
malised by the radius of the cylinder.

Assuming that the turbulence is statistically stationary and homogeneous, there
is a simple relationship between the PPgi,(X, w), and the WPPSDpp(q, w),
whereq is some azimuthal mode numbers

Wpp(X, w) Z Mnep(n, ), (7)

~ kofx 4

and

2
]- (8)

e

4 Conclusion

> e M8 £) (KoakohBm(Ko@) & m — Crm(Koa) &x )

—00

We adapted the model introduced by Devenport & Glegg [3] to a 2D cylindrical ge-
ometry and showed that roughness noise is indeed dipolar. However, the assumption
that the sources are not modified by the roughness is questionable as the boundary
layer over a cylinder is really sensitive to small perturbations. We also assumed that
the turbulence was statistically stationary and homogeneous around the cylinder,
which is unlikely as there are flow separations. Nonetheless this model allows us to
evaluate the impact of roughness without having to recompute the source terms for
each roughness configuration.
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Solution of a moving contact problem of
dynamic elasticity

M. Brun and L. I. Slepyan

Abstract We consider the problem of a rigid body moving in contact with an elastic
half-space. The problem has been studied in the framework of linear elasticity and
the general smooth frictionless solution has been obtained. We discuss the general
conditions under which the rigid body meets zero driving force drawing a paral-
lelism with the d’ Alembert paradox for incompressible and inviscid potential flow.
The steady-state general solution is obtained as the limit for the related transient
problem which provides the necessary information regarding energy flux from in-
finity. Mathematically, the elastic solution is found solving a mixed problem for a
single analytical function. The solution is based on the introduction of a new con-
dition regarding energy fluxes at singular points in addition to the well-known Sig-
norini conditions.

1 Introduction

The dynamic contact problem of a rigid indenter moving frictionless on a liner elas-
tic half-space is considered. The steady-state problem was analysed in [2, 4, 1, 3]
and the complete solution was found only for the sub-Rayleigh velocity regime. The
super-Rayleigh, subsonic and intersonic regimes were discussed in [4, 1], where it
was given evidence that it was not found a way to make the solutions to be unique
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a) Subsonic regime: v<c,
Sub-Rayleigh regime: v<c, Super-Rayleigh regime: ¢,<v<c,

N

W

0

b) Intersonic regime: ¢,<v<c,

ﬁciQ
2y
0 X X
c¢) Longitudinal wave speed : v=c, d) Supersonic regime: v>¢,
v Y
@ v lQ
0 LN

Fig. 1 The contact configurations in different speed regimes. The bold curve is the deformed elastic
half-plane boundary. The leading, x;, and the rear, x_, end points of the contact region are marked
by black and white circles, respectively. The localized longitudinal wave in equilibrium with the
indenter is sketched in (c).

and/or physically accepted. We report here the conclusions in [4], “The present pa-
per clearly raises many more questions than it solves, but these questions are very
pressing and are apparently being neglected by the elastodynamic community. We
shall have achieved our objective if we succeed in generating sufficient interest in
this challenging problem to ensure that some progress will be made in the next 26
years.” The objective was recently achieved by Slepyan and Brun in [5]. The above-
mentioned non-uniqueness in the problem formulation was resolved adding to the
well-known Signorini contact conditions, a condition concerning the energy-flux
significant singular points in the stress-particle velocity field. Thus, the solutions is
based on the following three conditions:

e positive (tensile) normal contact stresses are not allowed,
e penetration of the elastic material into the indenter is not allowed,
e energy-source (active) singular points are not allowed.

The steady-state solution is preceded by an analysis of the transient problem for
the normal load moving along the elastic half-plane boundary. The transient solution
allows to extract explicitly the general expressions of the normal traction and the
derivative of the displacement trough a single analytical function. These expressions
are used to address the mixed problem for a single region where the real part of an
analytical function is given, whereas the imaginary part of this function is given
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outside of this region (the dynamic contact problem for the half-plane). The use of
the transient problem with zero initial conditions allows to exclude automatically the
energy flux from infinity, which is important for intersonic and supersonic regimes.

2 Steady-state solution

The steady-state regime of a frictionless-contact of a smooth rigid body moving
along the half-plane boundary is considered. The displacement and the stress are
functions of the coordinates x <— x — vt and y in a moving coordinate system. The
plane strain dynamic problem is examined with the conditions at the boundary, y =0

W (x)=y(x), x€ (x_,x4);
Oy =0, x¢ (x,x1);
' (x) = O(1/]x])  |x] = eo. (1)

For a parabolic indenter y = x* /2r (r is the local radius of curvature of the indenter)
the contact configurations are given in Figure 1, while the contact stress distribution
is given in Figure 2.

(a) Sub-Rayleigh regime: v<c, (b) Super-Rayleigh regime: ¢,<v<c,

_;%‘* 0 5(+ 0 5‘4— 3 2‘*
o ES o5 ID

= = ) T [
X

Lt Oy

(c) Intersonic regime: ¢,<v<c, (d) Supersonic regime: v>c,

0 X Xy 0 Xy

Fig. 2 The contact stress distributions as a function of the normalized coordinate ¥ = x/x... The
special case v = v/2c, is the same as in the supersonic regime. In the super-Rayleigh subsonic (b)
and in the intersonic (c) speed regimes, the leading end points of the contact zone, x., are singular.
In (b) it is an energy absorbing square-root type point, whereas in (c) it is a weak point, which can
neither absorb nor release energy.
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3 Conclusion

The steady-state solution for an elastic half-plane under a moving frictionless
smooth indenter of arbitrary shape is derived. Mathematically, the considered mixed
problem is formulated and solved for a single region where the real part of an ana-
Iytical function is given, whereas the imaginary part of this function is given outside
of this region. The related steady-state problems of wedging of an elastic plane by
a smooth rigid body and the movement of a finite rigid body along the interface of
two elastic half-planes compressed together in the sub-Rayleigh regimes has been
also investigated in [5]. Note that the analytical technique used in this paper is ap-
plicable for any number of the ‘real-part’ regions and for a periodic array of the
real/imaginary (stress/displacement) regions. So the considered problems can also
be solved, in the same way, for the contact zone consisting of several simply con-
nected regions or of a periodic array of such regions.
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