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Cell imaging with sub-optical wavelength ultrasound
Matt Clark, Rafael Fuentes, Leonel Marques, Emilia Moradi, Fernando Pérez-Cota, Richard J. Smith, and Kevin F. Webb
Applied Optics Group, University of Nottingham, University Park, Nottingham, UK
matt.clark@nottingham.ac.uk

1. Introduction

Ultrasound is the most widely used medical imaging technique, valued for its non-destructive nature and ability to
image where there is no optical resolution. Optical microscopy is the most widely used cell imaging technique and
light is used because it has a small wavelength and can achieve high spatial resolution.

Light is increasing being used in medical imaging (despite bodies being “opaque”) because of its interesting
contrast mechanisms (eg in optical tomography or photoacoustics) and ultrasound is beginning to offer possibilities
for microscopy because, at high frequencies, ultrasound has the potential to surpass the resolution and contrast
limits of light.

2. Photons for microscopy

In many ways photons are a poor choice for imaging live biological specimens: the wavelength of (visible) light
restricts the resolution of microscopy systems below the limit where many significant biological processes occurs,
many biological specimens exhibit little intrinsic optical contrast and the high photon energy can cause chemical
reactions in the sample and leads to the dominance of photon shot noise in imaging.

Despite these shortcomings there are still many advantages of using light to image cells and tissue. Paradoxically
many of these are the same as the disadvantages outlined above: the short wavelength gives high resolution, the
lack of contrast means stains, labels and markers (contrast agents) can be used and are often required to see many
structures, the high photon energy permits the use of fluorescent markers which leads to superresolution techniques
such as STED and STORM which can extend defeat the Rayleigh limit. However, the resolution limit, the lack of
intrinsic contrast and photon damage remain limitations for optical microscopy.

3. Phonons for microscopy

Ultrasonics offers an intriguing route to high resolution imaging: the speed of sound is typically five orders of
magnitude lower than the speed of light and, at optical wavelengths, ultrasonic frequencies are in the GHz range
(as opposed to 500THz for light) which are directly accessible using RF and pump-probe techniques. At GHz
frequencies and above, ultrasound has the potential to provide higher resolution imaging than optical microscopy.

Many small-scale biological objects, such as cells, exhibit very little intrinsic optical contrast and without stain-
ing look like little more than transparent bags of water in a pool of water. For ultrasonic imaging the strongly
varying mechanical properties of cellular structures may produce useful contrast [1–4]. Imaging of this mechanical
contrast could aid the study of complex cell processes such as mitosis, division, differentiation, migration, force
production, mechano-sensitivity and dynamic events.

The energy carried by a single phonon is very small compared with the energy of a photon of the same wave-
length and the sound fields generated are relatively low amplitude so the ultrasound is not damaging in itself
(however generating and detecting the ultrasound is problematic).

The potential for a new ultrasonic imaging technique with sub-optical resolution has inspired much research in
GHz ultrasonics, for example, the scanning acoustic microscope (SAM) has been used for the acoustic imaging of
biological cells [5]. It showed promise as a high resolution method of performing acoustic imaging and mechanical
characterisation with minimal impact on cultured cells [1, 6, 7]. This implementation is practically difficult and is
typically restricted to greater than optical wavelengths unless cryogenic couplants, such as liquid helium [8], are
used (but these obviously can dramatically affect the acoustic properties and health of the sample).

The principle barrier to using high frequency ultrasound as an imaging tool is the extremely high attenuation at
high frequencies which limits the distance that sound travels in biological samples to a few µm at GHz frequencies.
It is for this reason that piezo-based technologies failed to work without cryogenic couplants. The use of laser
ultrasound techniques means that the sound can be generated and detected at very high frequencies, very close to,
or within the sample itself, and this (partially) overcomes the attenuation problem (figure 1 middle).

4. Cell imaging with picosecond laser ultrasonics

Picosecond laser ultrasound techniques have been used to generate and detect ultrasound with sub-optical wave-
lengths mainly in inanimate materials [9–12] and recently to measure the mechanical properties of biological
cells [13–15]. We have been able to demonstrate ultrasonic imaging on fixed and live cells using picosecond laser
ultrasonics with an acoustic wavelength of ∼270nm (figure 2) [16].
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Fig. 1. PS measurement system. (left) schematic of optics, (middle) planar transducer system (not too scale),
(right) typical signals

Our system consists of two lasers locked together in an ASOPs pump-probe configuration delivered to the sample
through a phase-contrast fluorescence microscope (figure 1). For cell imaging we typically use three layer zero-
order Fabry-Perot transducer and backside illumination for both pump and probe beams. The transducer protects
the cell from excess light and help to reduce heat load and enhance the signal-to-noise ratio (SNR). We design the
transducer, exploiting the optical resonances, to have high absorption at the (blue) pump wavelength, to resonantly
split the (red) probe light and to separate the different signal components in frequency to aid analysis (figure 1
right).

Fig. 2. Ultrasonic images of cells taken with sub-optical wavelength (270nm) ultrasound (greyscale optical,
colour Brillouin frequency). Left to right: fixed 3T3 cells with 200nm sections, fixed cardiac myocyte showing
sarcomeres, right live 3T3 fibroblasts.

Using this system we have been able to image and section a variety of fixed and living cells that were transferred
and cultured on the transducer equipped substrates. Figure 2 shows Brillouin frequency maps which are sensitive to
a combination of refractive index and sound velocity. However the refractive index contrast is thought to be weak
and the majority of the contrast arises from the changes in sound velocity. In addition, the Brillouin time traces
can be sectioned in time to section the sample in the axial direction and the transducer response can be imaged to
reveal mass loading and adhesion [17].

5. Discussion

Imaging with ultrasound at optical resolutions or beyond is technically very difficult and, despite recent technical
advances, formidable technical challenges remain before imaging with phonons can rival optical microscopy. Up
to the present the principal problem has been the low SNR of the measurement in the non-destructive regime and
this is particularly challenging for live cells as they have many vulnerabilities, their damage threshold is very low
and the speed of imaging is very important to prevent movement and aging artifacts. However, it is now possible
to measure with sufficient speed and SNR to image live cells.

While the difficulty compared with using fixed cells is considerable the importance of working with live cells
cannot be over stated. Fixed cells are widely used in optical microscopy but the fixation doesn’t significantly change
the optical properties and preserves the cell. Fixation denatures and cross links proteins and is widely considered



to increase the mechanical strength and stability of specimens which clearly has the potential to change the elastic
properties observed in ultrasonic microscopy.

Beyond increasing the imaging speed [18] and reducing the damage there is the significant problem of resolution.
In any microscopy system the resolution is limited by maximum spatial frequency that can be generated or detected
by the system and this is typically limited by the wavelength used (or the probe size in the case of scanning probe
microscopy). In all picosecond laser ultrasonic systems thus far, the axial limit has been limited by the ultrasonic
wavelength but the transverse limit has been limited to optical resolution because the optics limit the maximum
ultrasonic spatial frequencies that can be generated or detected.

One possibility for overcoming the problem of the transverse resolution being pegged to the resolution of the
underlying optics is to use sub-optical wavelength structures as generators and detectors of ultrasound. These can
be used to generate sound with higher spatial bandwidths than the optics alone. There are many candidates for such
structures including metallic nanoparticles, nanoshells, nanorods and nanowires. Each of these can be engineered,
like the layered transducers, to have optical resonances which can be exploited to enhance the generation and
detection of high frequency ultrasound. Figure 3 shows a signal from a single nanoparticle designed to strongly
absorb the pump and resonantly scatter the probe, the signal arises because the breathing mode of the particle
perturbs the resonant scattering which is picked up by the detectors.
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Fig. 3. (left) TEM images of gold nano particles, (right) acoustic response of a single nanoparticle

While the use of nanoparticles and nanostructures undoutably provides a way to overcome the optical resolution
limit and to generate and detect higher spatial frequencies, they are not sufficient in themselves to obtain transverse
resolutions limited only by the diffraction limit of the ultrasonic waves. There remains an intriguing problem of
how to control the ultrasonic fields at this small scale– how to form beams, how to steer them and how to image
with them. There are several possibilities but these are highly speculative and form the basis for much future work.
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Analysis of a locally resonant metamaterial for flexural waves in 
plates and Rayleigh waves in solids. 
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Abstract 
The exotic properties that characterizes a locally resonant metamaterial for flexur-
al waves (A0 mode) in thin plates are here in deep analyzed. A collection of close-
ly spaced aluminum rods attached to a plate gives rise to bandgaps, slow waves, 
and hyperbolic properties. Using results from 3D numerical simulation, and high-
frequency homogenization, we illustrate the propagation phenomena associated to 
the exotic points in the dispersion diagram. We present some application that ex-
ploits those dispersion properties and help achieving the extreme mechanical 
properties required to build a cloaking device or lenses for elastic waves.  
Finally we extend the results to the case of the halfspace that supports Rayleigh 
and body waves and that give rise to an extremely rich variety of propagative 
modes.    

1 Introduction 
Elastic metamaterials [1] are attracting increasing attention in various branches of 
wave physics for their capacity of controlling elastic waves almost at will. A very 
promising subset of these metamaterials is represented by those based on local 
resonance effects. They are realized using so-called sub-wavelength resonators 
because of their characteristic size (in the plane of interest), far smaller compared 
to the wavelength. Laboratory experiments [2] and numerical simulations [3] have 
shown that when such metamaterials are excited by elastic or acoustic sources 
they give rise to two types of phenomena (1) band-gap effects, i.e. frequency 
bands in which elastic energy cannot propagate, or (2) sub-wavelength focusing, 
i.e. energy conversion on wavelength much smaller than the original propagated 
signal. These early experiments have been conducted on a cluster of closely 
spaced aluminium beams rigidly mounted on a thin aluminium plate excited by a 
source in the kHz’s frequency range that excites A0 Lamb waves in the plate. We 
now present a further development of this locally resonant metamaterial that ex-
ploits regions of the dispersion curves where the mechanical properties are exotic, 
featuring very low velocity, bandgaps and hyperbolicity.  

Subwavelength bandgaps have recently been demonstrated with the full elastic 
system (Navier’s equation), using resonators that may look like forest trees in the 
frequency range of 10’s of Hz. In this case the underlying physics is similar to the 
case of the plate and therefore it is possible to achieve the same extent of wave 
control and the variety of phenomena demonstrated in the case of the plate. 
Given the complexity of the physics, especially for the 3D case the use of Bloch 
theory and high-frequency homogenization becomes necessary providing interest-
ing images of the modes.   
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2-Results  
The applications discussed in this paragraph consider the metamaterial made by 

an aluminum plate and a cluster of rods randomly arranged on a subwavelength 
scale first introduced by [2,3]. Fig. 1a shows the numerical model used for the 3D 
simulations with flexural waves. Further details can be found in [2,3,4,5]  

The plot in Fig. 1b shows the dispersion curves associated to the metamaterial 
previously described.  The blue line is associated to the low frequency branch of 
the A0 mode propagating outside the metamaterial (in the bare plate). The contin-
uous black line shows the bandgaps (2.1-4 kHz) emerging as a result of the cou-
pling between the A0 mode, polarized out of plane, and the longitudinal resonanc-
es of the rods (Fig. 1b). Notice also that the in the region right before the bandgap, 
group and phase velocity are much lower compared to the plate velocity. On the 
other hand, the phase velocity of the hybrid mode after the bandgap exceeds the 
plate velocity. 

This result can be explained in terms of effective material properties. The phase 
velocity v in the plate is defined by the following relationship: 

  𝑣 = !!!!!

!"!(!!!!)
! ;  (1) 

where k is the wavenumber, ω is the angular wave frequency, ρ and E are the ef-
fective ���density and effective Young’s modulus in the plate, respectively, h is the 
plate thickness, ���and ν is the Poisson’s ratio. In Equation (1), both E and ρ are ef-
fective parameters originated by the coupling between plates and beams, ���which 
make ���v a function of the beam’s length.  

One first interesting possibility explored in this study is the realization of a lens 
for flexural waves. Maxwell or Eaton lens for instance, require strong velocity 
contrasts to obtain the correct refracting index. These contrasts are difficulty 
achieved unless one can locally modify plate thickness/Young modulus. On the 
other hand, the dispersion law in Fig. 1b provides the right velocity contrast over a 
narrow frequency bands preceding the bandgap and an appropriate circular ar-
rangement of resonators with radially varying length can provide the sought con-
trast. This application might be interesting for waveguiding whereby waves can be 
focused/defocused or bent in different directions.  

A more challenging application combines a radially varying velocity profile 
with the presence of a region protected from flexural waves at the center of the 
cluster of resonators.  This object can realize a so-called “directional cloak”.  With 
the help of large 3D spectral element simulations and supercomputing facilities, 
we have designed a radially varying refractive index plate that allows directional 
invisibility cloaking of backward-scattered elastic waves. The directional cloak is 
based on a set of resonating beams that are attached perpendicular to the plate and 
are arranged at a sub-wavelength scale in few concentric rings. Numerical simula-
tions clearly show that for certain beam configurations (i.e. beam’s length), no 
back scattering and no penetration of elastic waves inside the cloak are obtained 
over a large frequency band.  

To prove that this type of elastic metamaterials, previously limited to plates or 
acoustics cases, can crossover to the realm of surface waves we show some recent 
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results obtained propagating Rayleigh waves through a set of resonators that have 
a lengthscale relevant for seismic applications. A vertical point source located at 
the surface of a 2D semi-infinite half-space, 150 m long and 30 m deep, excites 
Rayleigh and body waves over a large frequency band (10-120 Hz). While the 
body waves disappear in the depth, the Rayleigh waves propagate along the sur-
face toward a row of closely and randomly spaced resonators, which have proper-
ties similar to forest trees (Fig. 1c). Through numerical simulations we show how 
the propagation of the surface waves is deeply modified and characterized by large 
band gaps.  

Finally, through Bloch analysis and mode analysis through high-frequency ho-
mogenization (Fig. 1d) we unveil some of the physics underlying this new and 
promising seismic metamaterial.  

 
Figure 1 (a) The numerical model of the metamaterial made with plate and rods. (c) 
(Adapted from Williams et al (2015) and Colombi et al (2014)) Dispersion curves measured 
(black) and computed with Bloch theory (red) for the case of the plate. Arrows point to the 
respective modal deformation. The blue line shows the A0 dispersion curve for the naked 
plate. (c) Model of the metamaterial for Rayleigh waves. (d) Dispersion curves calculated 
using Bloch theory and modal deformation from high frequency homogenization (HFH). 
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Coupling plane wave representations and finite
elements for the simulation of time-harmonic
scattering in anisotropic media

Vahan Baronian, Anne-Sophie Bonnet-Ben Dhia, Sonia Fliss and Antoine Tonnoir

Abstract We consider the time-harmonic diffraction problem of elastic waves by a
bounded defect in an anisotropic infinite medium. We derive an original formulation
which is suitable for numerical computations: it consists in coupling several plane
wave representations of the solution in half-planes and a finite element representa-
tion in a bounded area containing the defect.

1 Motivation

The development of non destructive techniques requires numerical simulation of
time-harmonic wave propagation in large anisotropic structures, containing cracks
or any other localized scatterers. A natural choice is to use finite elements to mod-
elize the area around the scatterers, so that very arbitrary defects can be considered.
This gives raise to a classical question: which boundary condition can be imposed
at the artificial boundary of the finite element domain to avoid spurious reflections ?

There exist many techniques to do this in an infinite isotropic medium. The most
popular approach is the PML method (where PML stands for Perfectly Matched
Layer), which is both very simple to implement and very efficient. It is also possi-
ble to derive a transparent boundary condition, on a circular/spherical boundary, by
using a radial decomposition on Bessel functions (see [3], [4]).

Unfortunately, these techniques fail in the case of anisotropic media. On one
hand, in the PML technique, outgoing waves are selected by considering the phase
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velocity instead of the group velocity, which can lead to instabilities in the time
domain and to a wrong solution in the frequency domain (see [1]). On the other
hand, separation of polar/spherical variables does not work in anisotropic media.

In this work, we propose a new approach which is well-suited for homogeneous
anisotropic media. The method is presented in the 2D case, but can be extended to
the 3D case. The idea is to couple finite elements in a bounded domain containing
the defect with Fourier representations of the elastic field in infinite half-planes. It
has been inspired by a previous work [2] concerning periodic media. All the details
can be found in the PhD thesis of Antoine Tonnoir [5].

2 The scattering problem, geometry and notations

We consider an infinite anisotropic elastic medium, supposed to be homogeneous,
outside a bounded region containing the defects. To fix ideas, we suppose here that
the defect is a cavity O . The diffracted displacement field u = (u1,u2) has to satisfy
the following equations

div σ(u)+ω2ρu = 0 in R2 \O

σ(u)ν = g on ∂O
(1)

where ω is the pulsation, ρ the density and g is the source term related to the inci-
dent field. For simplicity, we suppose here that the material is viscoelastic and the
stress tensor σ(u) is linked to the strain tensor by a generalized Hooke’s law. Then
problem (1) has a unique solution u ∈ H1(R2 \O)2.

Let us suppose that the scatterer O is contained in the square Ωa = [−a,a]×
[−a,a], itself contained in the larger square Ωb = [−b,b]× [−b,b], with b ≥ a. We
will denote by Ωint the interior domain defined by Ωint = Ωb \O.

Fig. 1 Definition of the sub-domains used in
the formulation

Fig. 2 Diffraction of a quasi-shear wave by
defects in a strongly anisotropic material

Finally we introduce the four infinite straight lines and four half-planes which
are adjacent to the square Ωa:
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Σ 0
a = {x = a}×R, Σ 1

a = R×{y = a}, Σ 2
a = {x =−a}×R, Σ 3

a = R×{y =−a}

Ω 0
H = {x≥ a}×R, Ω 1

H = R×{y≥ a}, Ω 2
H = {x≤−a}×R, Ω 3

H = R×{y≤−a}

and such that ∂Ω
j

H = Σ
j

a , j = 0,1,2,3.

3 A formulation using plane wave representations in half-planes

Taking advantage of the homogeneity of the medium in the half-planes Ω
j

H , we can
give an explicit (integral) expression of the solution u, given its trace ϕ j on the
boundary Σ

j
a . Applying a Fourier transform in the direction parallel to Σ

j
a , we get

a coupled system of differential equations of order 2 with constant coefficients that
we can solve explicitly. This gives an representation of u in the half-planes as a
superposition of propagating and evanescent plane waves.

Then we derive a formulation where the unknowns are the solution u in the in-
terior domain Ωint and the four traces ϕ j of the solution on the edges of the half-
planes. Coupling relations are imposed to ensure the compatibility of the different
representations in the intersections of adjacent half-planes, or in the intersection
between one half-plane and the interior domain (when b > a).

This formulation is discretized by using 2D finite elements in Ωint and 1D finite
elements on the lines Σ

j
a . The approximations of the traces ϕ j are supposed to van-

ish at some distance of the square Ωa. Quadrature formulae are used to compute the
Fourier integrals. Finally, a direct inversion of the matrix may be costly, because of
the presence of full-blocks due to the integral operators. But thanks to the overlap-
ping when b > a, we show that our method is well-suited for an iterative resolution
using GMRES algorithm.

Once the problem is solved, knowing the traces ϕ j enables to reconstruct a pos-
teriori the solution in the half-planes (and therefore in the whole domain), which is
impossible when using PML for instance (see Figure 2).
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A class of reduced-order models for elastic
waves in a layer

C. J. Chapman

Abstract This paper shows that the numerical approach to elastic wave propaga-
tion in a layer given in Pagneux & Maurel (2001) admits a far-reaching but simple
analytical treatment. Among the exact results obtainable, one is that the numerical
approach of Pagneux & Maurel gives exact results, both for the dispersion relation
and field shape, on an easily determined grid of points in the (frequency, wavenum-
ber) plane. The mathematical methods used in the paper are Fourier series, barycen-
tric representation, Euler truncation, and elimination of removable singularities by
L’Hôpital’s rule. Thus the methods used are elementary; they amount, in an unex-
pected way, to interpolation in the (frequency, wavenumber) plane, an idea which
appears to be new. A principal finding in the paper is a class of reduced-order mod-
els, expressible in simple analytical terms, which display extraordinary numerical
accuracy for both the field and dispersion relation, even at low order.

1 Introduction

The starting point for this paper is a recent method for obtaining a family of poly-
nomial approximations to the dispersion relation for elastic waves in a layer [1, 2].
The next stage, to determine the corresponding approximations to the field, is the
subject of the present paper. It will be shown that truncations of a suitable class
of Fourier series leads to a more tractable analytical treatment than might be ex-
pected, via the intermediate stage of barycentric representation of the dispersion
relation, and that the analytical results can be used to explain the numerical results
in [3]. The paper can also be viewed as an extension, to arbitrary regions of the (fre-
quency, wavenumber) plane, of the approach presented in [4], which is confined to

C. J. Chapman
Department of Mathematics, University of Keele, Staffordshire ST5 5BG, UK
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a strip surrounding the frequency axis. The theory of barycentric approximations is
explained in [5, 6, 7].

2 Fourier representation of the field

In standard notation, the field in an elastic layer can be represented as

u = hi
V2

K

{
L2

3S(Y,L1)−L2
2S(Y,L2)

}
, v = h

U1

K

{
L2

1C(Y,L1)−L2
3C(Y,L2)

}
, (1)

where the functions S and C are defined by

S(Y,L) =
∞

∑
n′=1

(−1)n′ sin{(2n′−1)πY}
1
4 L2−{(n′− 1

2 )π}2
, C(Y,L) =

∞

∑
′

m′=0

(−1)m′ cos{2m′πY}
1
4 L2− (m′π)2

.

(2)
A prime on a summation indicates that the first term is to be halved. This represen-
tation gives a periodic extension of the field outside the layer region |Y | ≤ 1

2 , and
has been chosen to make the extension continuous, but with discontinuities in slope
at |Y | = ± 1

2 . Another type of extension, analytic up to and well beyond the layer
boundaries, is

u = hi
V2

K

{L2
3 sin 1

2 L1

L1
S̃(Y,L1)−L2 sin( 1

2 L2) S̃(Y,L2)
}
, (3)

v = h
U1

K

{
L2

1 cos( 1
2 L1) C̃(Y,L1)−L2

3 cos( 1
2 L2) C̃(Y,L2)

}
, (4)

where S̃ and C̃ are defined by S̃ = S̃o + S̃e and C̃ = C̃o +C̃e with

S̃o(Y,L) =
∞

∑
n′=1

−(2n′−1)π sin{(2n′−1)πY}
1
4 L2−{(n′− 1

2 )π}2
, S̃e(Y,L) =

∞

∑
m′=1

2m′π sin(2m′πY )
1
4 L2− (m′π)2

,

(5)

C̃o(Y,L) =
∞

∑
n′=1

−cos{(2n′−1)πY}
1
4 L2−{(n′− 1

2 )π}2
, C̃e(Y,L) =

∞

∑
′

m′=0

cos(2m′πY )
1
4 L2− (m′π)2

. (6)

The subscripts o and e indicate odd multiples 2n′−1 and even multiples 2m′ of πY
appearing in the trigonometric terms. This extension has discontinuities at |Y |=±1.
Numerically, the former extension is more useful on the Rayleigh-wave branch of
the dispersion relation, and the latter is more useful on the other branches.
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3 Barycentric representation of the dispersion relation

When the above representations of the field are used in imposing the boundary con-
ditions, and common factors cancelled, the dispersion relation takes the form

L4
3

K2

∞

∑
n′=1

(−1)n′(2n′−1)π
1
4 L2

1−{(n′−
1
2 )π}2

∞

∑
′

m′=0

(−1)m′L2
1
4 L2

2− (m′π)2
=

−L1L2

∞

∑
n′=1

(−1)n′(2n′−1)π
1
4 L2

2−{(n′−
1
2 )π}2

∞

∑
′

m′=0

(−1)m′L1
1
4 L2

1− (m′π)2
. (7)

This is equivalent to representing the two tangents in the dispersion relation in
barycentric form, i.e. as a ratio of two partial fraction expansions. Zeros in more
than one denominator simultaneously are of exceptional physical importance, in
defining the ‘grid of resonances’. They are analysed in a straightforward way by
L’Hôpital’s rule or local expansion in differentials.

4 Reduced-order models

Truncations of the infinite series in (7) lead to a polynomial approximation to the
dispersion relation which is exact on a grid of point in the (frequency, wavenum-
ber) plane. Extremely high accuracy is obtained by using Euler truncation: the first
member of this family is obtained from the rule ‘add half the first term omitted’; the
second member is obtained from the first two terms omitted, with coefficients 3/4
and 1/4; and so on to arbitrary order r, with appropriate coefficients [8, p. 161]. For
each of these truncations, there is a corresponding truncation of the Fourier series
representations of the field. These are the reduced-order models referred to in the
introduction. They have remarkable numerical accuracy up to high frequencies and
wavenumbers, even at low order. Full details, with extensive graphs and compar-
isons, are presented in [9], submitted for publication.
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Veering of dispersion curves and prestress
effects in multi-wire helical waveguides

Fabien Treyssède

Abstract Guided wave based methods are of potential interest for the non destruc-

tive evaluation of cables. However, the understanding of mechanisms governing the

propagation of guided waves is particularly complicated owing to the helical and

multi-wire structure of strands, the basic elements constituting cables. The com-

plexity of the problem is further increased by the effect of high tensioning forces

applied on cables. A typical dispersion curve veering phenomenon, sensitive to the

applied loads, occurs in seven-wire strands, a common type of strands in modern

constructions. The main goal of this paper is to highlight the origin of this phe-

nomenon.

1 Introduction

Based on a semi-analytical finite element (SAFE) method, recent progress has been

made in the modeling of wave propagation in seven-wire strands [1, 2]. Neverthe-

less, some works are still required. A typical dispersion curve veering phenomenon

occurs for the fundamental longitudinal mode. This phenomenon, sometimes re-

ferred to as notch frequency, has been observed both experimentally [3] and numer-

ically [1] but its origin is still unexplained. Besides, the notch frequency significantly

increases with applied loads. This increase turns out to be essentially caused by in-

terwire contact effects, as shown by numerical tests [2]. However, the convergence

of numerical results has to be assessed. In particular, further works are needed to

quantitatively check the modeling of contact with reference solutions.
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2 Numerical method

SAFE modeling of helical waveguides under prestress. The application of a

SAFE method consists in assuming a axial harmonic dependence of acoustic fields

before finite element discretization, so that only the cross-section needs to be

meshed. With this technique, the axial variables must be separable. For helical

strands, this separation is possible with a specific curvilinear coordinate system,

called twisting coordinate system [1, 4], which has constant non zero torsion but

zero curvature. In order to acount for prestress effects, one starts from the so-

called linearized updated Lagrangian formulation of non-linear mechanics (see for

instance Ref. [5]). This formulation is here extended to twisting coordinates and

adapted to a SAFE formulation. The SAFE method finally leads to the following

kind of eigensystem, characterizing the elastic guided modes in prestressed strands:

{K1 −ω
2M+ ik(K2 −KT

2 )+ k2K3}U = 0, (1)

The matrices Ki (i=1,2,3) include geometric stiffness terms related to the Cauchy

prestress of the static state. Further details can be found in Refs. [2].

Static contact modeling. The first step of the analysis is to compute the static

prestress state. One starts from the homogenization method described in Ref. [6]. In

this paper, an iterative procedure is used to properly account for contact, based on a

node-to-node procedure together with a direct elimination method [7]. As the axial

load is incremented, contact pairs of nodes are formed on both sides of the initial

point-to-point interwire contact zone, until the prescribed axial strain ε is reached.

3 Results

Notch frequency phenomenon and interwire contact effects. The cross-section

of the seven-wire strand (steel) is meshed with six-node triangles and refined at

contact regions. Based on the static model, the contact half-width is computed as a

function of the normal contact force up to the prescribed axial strain ε=0.6%. Good

agreement is found with Hertz analytical solution for parallel cylinders (results not

shown for paper conciseness). Based on the SAFE model, Figure 1a shows the notch

frequency phenomenon of the fundamental longitudinal mode, usually denoted as

L(0,1). The notch frequency increases from 0.32 (62Hz) in the unloaded case to

0.42 (82Hz) in the loaded case. These values are in agreement with the experiments

of Refs. [3, 8]. The notch frequency corresponds to a curve veering phenomenon

between the dispersion curves of two distinct longitudinal-like wave modes [1], la-

beled as L(0,1)a and L(0,1)b. As recalled in Sec. 1, its increase is indeed mainly

due to the increase of interwire contact width rather than prestress itself [2]. In order

to briefly assess convergence, Fig. 1a also gives results with a refined mesh (46893

dofs): changes are negligible for the loaded case, thus indicating a good accuracy



Veering of dispersion curves and prestress effects in multi-wire helical waveguides 3

with the initial mesh. Convergence can yet hardly be achieved for the unloaded case,

somehow purely theoretical, because the contact width tends to zero.
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Fig. 1: (a) Curve veering for ε=0% (gray) and for ε=0.6% (black), continuous lines:

initial mesh (12369 dofs), dashed lines: refined mesh (46893 dofs). (b) Dispersion

curves in the (k,ω) plane for the uncoupled blocked peripheral wire.

The uncoupled peripheral wire. Following the analysis of Ref. [9], curve veering

phenomena usually occur in a weakly coupled system and may be predicted from the

uncoupled system. Let us consider an uncoupled peripheral wire, radially blocked

along its contact width. Blocking the radial displacement in such a narrow region

completely breaks the circular symmetry of the wire and, as opposed to the free

cylinder case, the compressional, flexural and torsional motions get fully coupled.

A curve veering actually occurs, in a very similar fashion as for the fully coupled

strand. This veering is due to the coupling between two modes, one of longitudinal

type and the other of flexural type, as shown in the (k,ω) plane by Fig. 1b. It can be

inferred that the origin of the notch frequency inside seven-wire strands lies in the

radial displacement constraint imposed on peripheral wires by the central one.
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A Generic GTD-Kirchhoff Scattering Model for 
Ultrasonic NDT of Planar Defects 
 

Michel DARMON, Vincent DORVAL, Audrey KAMTA DJAKOU, Larissa 
FRADKIN, Sylvain CHATILLON 

 
 
 

 
Abstract Simulation is helpful for evaluating the performances of inspection 

techniques and requires the modeling of waves scattering from defects. 
Two classical flaw scattering models have been previously evaluated and im-

plemented in the CIVA platform developed by CEA/LIST to deal with planar de-
fects: the geometrical theory of diffraction (GTD) and the Kirchhoff approxima-
tion (KA). These two approaches appear to be complementary. Combining them 
so as to retain only their advantages, we have developed a combined model (the 
so-called Kirchhoff & GTD) based on the Physical Theory of diffraction (PTD). 

Both theoretical and experimental validations of the Kirchhoff & GTD model 
have been carried out in various practical NDE (pulse echo and TOFD) configura-
tions studying both direct and corner echo modes. Theoretical validations have 
consisted in comparisons between this new model and other scattering models 
(GTD, KA and a finite-element method).  

Whereas the previously existing models were notably useful to respectively 
simulate specular reflection echoes for Kirchhoff and edges diffractions for GTD, 
the performed validations have shown that the Kirchhoff & GTD model provides 
a generic modeling of both the two main scattering phenomena arising from a pla-
nar flaw: specular reflection and edges diffraction. 

 

1 Principle of the Kirchhoff & GTD model 

The Kirchhoff model is useful for the modelling of echoes due to specular re-
flections but is less accurate for observation directions far from the specular one 
since it doesn’t model correctly and quantitatively edges diffraction. On the other 
hand, contrary to Kirchhoff, the GTD model is not valid for specular observation 
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direction since the GTD coefficient diverges but GTD is very effective to predict 
edge diffractions echoes in most configurations.  

The developed Kirchhoff & GTD model (Zernov et al., 2012) is devoted to the 
simulation of both reflection and diffraction echoes from crack-like flaws. It is 
based on the Physical Theory of Diffraction (PTD) (Ufimtsev, 2007) which con-
sists in correcting the Kirchhoff edge diffraction field by that modelled by GTD. 
The PTD field is the sum of the Kirchhoff field and a GTD modified field in 
which the GTD coefficient has been replaced by the difference between GTD and 
Kirchhoff edge diffraction coefficients:  

 (1) 

 
At the specular observation direction, the Kirchhoff field is finite leading to an 

effective prediction of specular reflection. But the GTD and Kirchhoff 

 edge diffraction coefficients diverge but have the same singularity. 

When making the difference of the two coefficients, their singularities cancel each 
other and the diffraction coefficients difference  is finite. 

Consequently the PTD scattered field is spatially uniform and presents no singu-
larity at the specular observation direction unlike GTD. The Kirchhoff field is then 
predominant compared to the edge diffraction contribution and the Kirchhoff & 
GTD model leads to similar results than the Kirchhoff model:  

  (2) 

When the observation direction is far from to the specular direction, edge dif-
fraction effects are predominant compared to reflection phenomena, the Kirchhoff 
field is equal to the Kirchhoff edge diffraction contribution and so cancels it so 
that the Kirchhoff & GTD model leads to similar results than the GTD model. 

 (3) 

Flaws which can be modelled thanks to Kirchhoff & GTD are the same than 
with the GTD model: planar flaws (rectangular, semi-elliptical or CAD contour 
planar flaws), multi-facetted flaw and branched flaw.  
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2 Validations of the Kirchhoff & GTD model  

As example, for P waves, in Figure 1, the Kirchhoff & GTD model leads to a 
very good agreement with FEM for all tilt angles. A logical equivalence with KA 
is observed near the specular reflection configuration (α=90°) and with GTD (not 
represented here for simplification) for a diffraction configuration. In the latter 
case, the Kirchhoff model leads to prediction errors for tilt angles corresponding 
to observation directions far from the specular one. 
  

 

 
Figure 1: a) inspection at 5MHz with P waves of various incidences of a rectangular 5mm 

high defect b) and c) zoom: comparison of the simulated echoes amplitude in dB versus the 

tilt angle α for different 2D models: FEM, Kirchhoff (KA) and Kirchhoff & GTD (PTD). 

Satisfactory experimental validations (Darmon et al., 2016) of the devel-
oped PTD model have also been obtained in both pulse echo and TOFD configu-
rations. 
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Bearing defects prediction using Empirical 
Wavelet Transform 

M. Er-raoudi, M. Diany, H. Aissaoui, M. Mabrouki 

 
Abstract: Rolling bearing elements are a mechanical components considered as 
the most widespread parts in machines. However, its operating conditions are not 
always ideal. This causes defects and may reduce the machine service life. The 
real-time monitoring of the bearing vibration is essential to detect and classify the 
defects. 
This work simulates a three-degree-of-freedom system of rotating ball bearings in-
troducing defects and detects their presence using Empirical Wavelet Transform. 
The results of this new approach are discussed and compared with the Empirical 
decomposition mode.  

1 Background 

1.1 Empirical Mode Decomposition 

The Empirical Mode Decomposition (EMD) is an adaptive method, proposed by 
Huang et al. [1], aims to decompose a signal into a sum of N + 1 components 
called Intrinsic Mode Functions (IMFs) fk(t)  [2]: 
 
                                                                                                                               (1) 

 

1.2 Empirical Wavelet  

The construction of the Empirical wavelets (EW) is equivalent to the construction 
of Band-pass filters. The empirical scaling function and the empirical wavelets are 
expressed by equations (2) and (3), respectively [2]. 

 
 

                                                       (2) 
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                           (3) 
 
 
 
 
 

2 Modelization  

In the rolling element bearing model, all bearing components are considered: Inner 
race, outer race, ball and lubrication film between races and balls [3]. 

 
Figure 1: The mechanical 

Model of bearing system [3] 
 
 
 
 

 
 

Where MOR,MB and MIR are respectively the Outer Race, ball and Inner Race 
mass. 
KOR, KOF,KIF, and KIR are respectively the outer race ,outer race fluid film,inner 
race fluid film and inner race stiffness. 
COR and CIF are the outer and the inner race damping 
Excitation forces (F1, F2, F3) corresponding to the loading in the presence of de-
fects which can affect the inner race, outer race, cage and ball [4].  
The motion equations are: 
 
 
                                                                                                                                
                                                                                                                               (4) 
 
 
 
Where (y1, y2 , y3) represent the displacements along the radial direction. 
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3 Kinematics of rolling bearing defect 

Assuming that both races may rotate, the outer and inner races are respectively ro-
tating at a constant speed �0 and �i; the frequencies generated by a bearing are 
[5]: 

 
             
                                                                                                                               (5)      
 

                                                                (6)                   

 
                                                                                                                               (7) 

 
                                                                                                         

                                                                                                                               (8) 
 

 
Where Bd is the ball diameter, Pd is the pitch diameter, N is the number of rolling 
elements and � is the contact angle, BPFO is the ball pass frequency on an outer 
race defect, BPFI is the ball pass frequency on an inner race defect, FTF is the 
fundamental train frequency; BSF is the ball spin frequency. 

4  Numerical simulation 

The equation 4 is solved using simulink/matlab. Indeed, Wavelet Transform lets to 
extract more information’s form the vibratory signal in the presence of shocks [6] 
[7] .In the present study we have considered the Wavelet Transform with a spe-
cific Wavelet (EW). A comparative study is made between EMD and EWT, which 
showed that all of the two methods lets us to detect bearing shocks. This simula-
tion gives good result for EWT detection relatively to the EMD. The EMD gives 
too many modes while the EWT lets to separate different AM-FM modes compos-
ing the signal. 
 

5 Conclusion 
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This work is devoted to bearing fault prediction based on the Empirical Wavelets 
Transform. The obtained results demonstrates that the EWT is a powerful tool in 
the field of bearing health monitoring. 
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Junction of acoustic waveguides at low
frequencies; application to periodic media

Jean Kergomard

Abstract When the walls are rigid, the fundamental mode of waveguides or cavities
is uniform. For the case of waveguides, this mode is the unique mode propagating
at low frequencies. For this reason, the junction between several waveguides can
be represented asymptotically as the combination of an acoustic compliance and a
matrix of acoustic masses. Examples are given for 2, 3 or 4 guides. A particular
example is that of a junction of a cylindrical tube and a truncated cone.

1 Introduction

The purpose of this paper is the study of solutions of the Helmholtz equation in a
set of waveguides with perfectly rigid walls. For cylindrical pipes, the fundamental
pressure mode is the planar one (with zero transverse eigenfrequency), with is uni-
form over a cross section. Similarly for closed (3D) cavities the fundamental mode
is uniform, with a zero eigenfrequency. Using these peculiarities, we derived the
behavior of the junction of a waveguide set at low frequencies. This behavior exists
for other shapes of waveguides, such as conical waveguides:the fundamental mode
has a spherical symmetry.

The paper presents the general formulation for the junctionof a waveguide set,
then the example of the junction of a cylinder with a cone.

1
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2 Formulation of the junction of several waveguides

Figure 1 shows the junction of 3 cylindrical guides, with a junction cavity of vol-
umeV. The integral equation that links the acoustic pressurep(r) and velocityv(r)
normal to the surface is written as:

p(r) = jωρ
∫

S
G(r,r′)v(r′)dS′. (1)

ω is the angular frequency,ρ the air density,G(r,r′) the Green’s function of the
cavity when it is closed. A useful feature is the modal expansion:

G(r,r′) =
c2

V ∑
mnp

φφφ mnp(r)φφφ mnp(r
′)

ω2
mnp −ω2 (2)

wherec is the speed sound, andωmnp the eigenfrequencies of the modesφφφ mnp(r).
The first modeφφφ000(r) is uniform, withω000= 0. Therefore the dependence of two
first terms of the expansion ofG(r,r′) is ω−2, then 1.

Eq. (1) can be projected on the modes of each guidei, which are chosen to be
dimensionless and constitute the vectorψψψ i. The dimension of this vector is infinite.
This leads to the following impedance matricesZi j for the guidesi and j:

Zi j =
jωρ
SiS j

∫

Si

∫

S j

ψψψ iG(r,r′) tψψψ jdSidS′i. (3)

A basic hypothesis is the absence of interaction of the two extremities of each
guides, i.e., the absence of overlap between evanescent modes at the two extrem-
ities. The impedance matrix for these modes is diagonal, involving the character-
istic impedances. Handling sub-matrices with this hypothesis allows the reduction
of the impedance matrix to the propagating modes, i.e., at low frequencies to the
fundamental modes, as follows:

Fig. 1 Junction of 3 cylindri-
cal waveguides with junction
cavity of volumeV

X

X

X

V

Jean Kergomard
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Pi andUi are the amplitude of the planar mode pressure and flow rate in guidei. The
first term corresponds to the compressibility effect, whilethe second corresponds to
inertial effect: the matrixM is proportional toρ (for an incompressible fluid, it can
be found by solving the Laplace equation for different boundary conditions).M is
symmetric (reciprocity). When the volumeV vanishes, the total flow rate vanishes
too, and theN equations are replaced byN −1 equations, obtained by writing the
difference between 2 equations.

3 Examples and applications

Several examples of junctions of 2, 3 or 4 cylindrical waveguides for which the
volumeV is zero have been treated in many papers [2, 3, 4, 5]). Recently we treated
the junction of a cylinder with a cone, and improved previousresults. A particular
case of the latter problem is the radiation of a cylindrical pipe into an infinite flange
[7], and the present formulation leads to excellent approximations up to the first
cutoff ω = 3.84c/R, under the condition that the zero-frequency length correction
(0.8216 times the radiusR) is known [6].

This low-frequency model can be used for non-interacting discontinuities, i.e., in
general for guides with transverse dimensions much smallerthan the length between
two discontinuities. Then a general model can be deduced forthe coupling of two
waveguides by perforations, or, more generally, for guideswith periodic disconti-
nuities. The example of perforated tube mufflers is well known. A generalization
to various applications can be done, thanks to an analyticalcalculation of 4th order
matrices, corresponding to a medium with two waves in each direction [4].
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Huang Hilbert Transform based procedure for 
multi-crack identification of beams under a 
moving excitation 

H. Chouiyakh, L. Azrar, K.Alnefaie and O. Akourri 

Abstract Non destructive testing is concerned by techniques of damage detec-
tion in structures, e.g. ultrasonic, eddy-current, radiographic, acoustic emission 
testing, etc. Those procedures can be classified as local techniques for non de-
structive testing. Otherwise, the global techniques are mainly concerned by vibra-
tion based methods. The present work aims first to study free and forced vibra-
tions of multi-cracked beams (forward problem) and secondly to analyze the 
obtained signals by Huang Hilbert Transform (Inverse problem) for cracks identi-
fication. The cracks are assumed to be open and modeled through rotational spring 
model. In this paper, the use of this transform for cracks detection is highlighted. 
Instantaneous frequency will be investigated as damage index tool.  

1. Short overview of the Huang Hilbert Transform 

The Huang Hilbert transform (HHT) consists of empirical mode decomposition 
and Hilbert spectral analysis.The Empirical mode decomposition (EMD) is a tech-
nique representing non linear and non-stationary signals as sum of simpler com-
ponents called Intrinsic Mode Functions (IMFs). The decomposition is performed 
through a repeated sifting procedure. At the end, the time signal x(t) can be ex-
pressed in terms of n number of IMFs:    

                                                                                    (1) 

where cj(t) is the jth intrinsic mode function and rn(t) is the residue. The Hilbert 
transform is then applied to each of those components, in order to get instantane-
ous frequency plots. Hilbert Transform (HT) of the function cj(t) is defined by [4]:          

                                              (2) 

The instantaneous amplitude Aj(t) and phase  are given respectively by: 

                                      (3) 

Instantaneous frequency (IF) measures the rate and direction of a phase in the 
complex plane, and is defined as the derivative of the phase :        
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                                                (5) 

2. Vibration of beams carrying moving excitation 

Let us consider an Euler-Bernoulli uniform beam containing ‘r’ cracks and sub-
jected to a travelling load F(x,t). The transverse displacement of each segment of 
the beam is denoted by yi(x,t) and the partial differential equation governing the 
motion of each sub-beam is : 

             (6) 

where  , A, c and are mass density, cross sectional area, damping coefficient, 
viscoelastic coefficient respectively. In order to find eigenmodes and eigenfre-
quencies of the considered multi-cracked beam, one has to solve the following 
boundary value problem for each sub-beam i: [2] 

             (7) 

where is the local displacement associated to the jth vibration mode of the ith 
sub-beam and is the jth eigen frequency . In order to solve the present problem, 
the following compatibility equations at cracks locations are incorporated: 

                                                           (8-a) 

                                          (8-b)   

where:    
    

By using the modal expansion theory the set of decoupled time differential equa-
tions is obtained: 

           (10) 

Vibration of the multi-cracked beams is a problem of big interest. With high num-
ber of cracks, this problem needs well adapted mathematical procedures in order 
to overpass the numerical implementation and computation difficulties and par-
ticularly when the spring model is adopted. The differential quadrature method 
(DQM) is elaborated here for the space and time domains.  
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3. Numerical results 

Various numerical results are obtained and only some of them are presented here. 
Accuracy and convergence of the elaborated differential quadrature method is 
demonstrated in Table 1.  

Table 1: First three natural frequencies of beams containing four cracks with various B-C 

Huang Hilbert Transform is a powerful tool for detection, and localization of con-
sidered cracks. By analyzing obtained signals, on can see clearly that instantane-
ous frequency can be considered as a damage index since the curve presented in 
Figure1 shows accurately positions of all considered cracks. 

4. Conclusion 

A methodological approach based on the differential quadrature method and the 
HHT is elaborated for multi-cracks identification. The HHT are applied to the 
computed eigenmodes as well as to the computed forced responses. This work 
demonstrates robustness of HHT in detection of cracks by using linear vibration 
responses. Instantaneous frequency plots are used for cracks identification. 
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Analytical approach DQM (N=150) Error % 
B-C 

µ1 µ2 µ3 µ1 µ2 µ3 µ1 µ2 

Pinned-Pinned 3,13409 6,26525 9,39787 3,13409 6,26525 9,39787 6,732x10-8 -7,66x10-9  

Clamped-Free 1,87014 4,68749 7,84055 1,87014 4,68749 7,84055 2,513x10-7 -1,05x10-7 

Clamped-Clamped 4,72552 7,84087 10,9687 4,72552 7,84087 10,9687 -1.22x10-8 -1,30x10-8 

Clamped-pinned 3,92157 7,05630 10,1870 3,92157 7,05630 10,1870   3,57x10-8 -2,52x10-8 

Figure 1: Multi-crack 

detection of a beam 

containing eight 

equally spaced cracks   
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Analytical solution for the diffuse scattered field of 
elastic waves at randomly rough surfaces 

Fan Shi1, Michael J.S. Lowe1, Elizabeth Skelton2, and Richard 
Craster2  
 
Abstract  
 
There is a growing interest in elastic wave scattering from randomly 
rough surfaces nowadays, with applications in Non-destructive 
evaluation (NDE) and seismology.  In NDE it is important to know 
the expectation of the scattering intensity and its angular distribu-
tion, as the information can be used for optimizing the detection by 
selecting inspection angles where a reasonably large scattering am-
plitude can be measured. Knowledge of the expected intensity is also 
vital for the approval and qualification of proposed inspection pro-
cedures. The expected value can be obtained as a sample average of 
quantities via the Monte Carlo method.  However, while this can 
provide the results for any case of interest, it does not inform the un-
derlying link between the roughness and the scattered field. Moreo-
ver it can be very tedious and time-consuming to accumulate the 
many solutions to be averaged, for example multiple Finite Element 
simulations.  Analytical methods provide alternatives since the sur-
face statistics are embedded into the formulae, and the relationship 
between the roughness and the scattering properties can be revealed.  
The analytical solution for the coherent intensity has been found by 
Ogilvy for elastic waves [1].  However, no analytical solutions for 
the diffuse intensity have been developed so far.   
 
In this work, we present the development of an elastodynamic theory 
for the diffuse field using the Kirchhoff approximation (KA). Ana-
lytical solutions are derived for predicting the diffuse intensity with 
a wide range of roughness within the valid region of the KA [2].  
This enables the analytical prediction of the expected intensity of the 
reflection and mode conversion of elastic waves from surfaces of 
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given statistical roughness.  The theory is then verified by numerical 
Monte Carlo simulations and also experiments using phased arrays.   
 
 
Furthermore, we apply the theory to analytically investigate the im-
pact of the roughness and elasticity on the mode conversion, and 
consequently on the scattering intensity for different modes.  In ad-
dition, the 3D roughness-induced depolarization is also investigated.  
 
[1] J. A. Ogilvy. Theory of Wave Scattering from Random Rough 
Surfaces. Adam Hilger Ltd., 1991.  
 
[2] F. Shi, W. Choi, E. A. Skelton, M. J. S. Lowe and R. V. Craster.  
‘The validity of Kirchhoff theory for scattering of elastic waves 
from rough surfaces’. Proc. R. Soc. A, 471:1-9, 2015. 
 









 



Ultrasonic particle sizing in non-dilute suspensions 
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Abstract 
Particle size distributions (PSDs) in solid-in-liquid suspensions can be estimated from 
ultrasonic attenuation measurements based on using a wave propagation model. In 
this model, the estimated attenuation is adaptively fitted to the measured data across 
frequency range. The current wave propagation model breaks down at high solid 
concentration. This is more likely due to the use of continuous phase viscosity instead 
of the effective viscosity of the mixture surrounding particles. This presentation 
shows the PSDs estimation from incorporating effective viscosity formulations into 
the wave propagation model. It has been found that the Happel model provides the 
best estimate of the PSD in high concentration suspensions. 



 



Interfacial waves and neutrality for semi-infinite
platonic crystals

S. G. Haslinger, R. V. Craster, A. B. Movchan, N. V. Movchan, I. S. Jones

Abstract We present new results for localisation and transmission of flexural waves
in a structured elastic plate comprising a semi-infinite two-dimensional array of
rigid pins. Trapped waves close to the interface of the homogeneous part of the
Kirchhoff-Love plate and the part containing the rigid pins are analysed. The con-
nection between the dispersion properties of flexural Bloch-Floquet waves and the
semi-infinite platonic crystal considered here is demonstrated using the discrete
Wiener-Hopf technique.

1 Introduction

Since the 1980’s, there has been substantial attention devoted to wave interaction
with periodic structures leading to the recent surge of interest in designing metama-
terials, photonic crystals and micro-structured media that are able to generate effects
unattainable by natural media. Many of the concepts originate in electromagnetism
and optics but are now filtering into other systems such as the Kirchhoff-Love plate
equations for flexural waves. This analogue of photonic crystals, labelled as pla-
tonics by [1], features many of the effects from photonics such as ultra-refraction,
negative refraction, Dirac-like cones and cloaking [2, 3, 4] amongst others.

The Kirchhoff-Love equations are good approximations and capture much of the
essence of the wave physics. Multipole methods extending pins to cylinders [5],
or high-frequency homogenization approaches [6] to get effective continuum equa-
tions that encapsulate the microstructure, have emerged relatively recently. For finite
pinned regions of a plate, a Green’s function approach [7] leads to rapid numerical
solutions, or for an infinite grating, one may use an elegant method for exploring
Rayleigh-Bloch modes. This includes extensions to stacks of gratings and the trap-
ping and filtering of waves [8]. A natural extension is to consider semi-infinite grat-
ings, or edge states in semi-infinite lattices, and here we present exact solutions,
together with illustrative examples of localisation and other wave phenomena.

S.G. Haslinger, A.B. Movchan, N.V. Movchan
University of Liverpool, Department of Mathematical Sciences, Liverpool L69 7ZL, UK e-mail:
sgh@liverpool.ac.uk

R.V. Craster
Imperial College, London SW7 2AZ, UK

I.S. Jones
Liverpool John Moores University, Liverpool L3 3AF, UK
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2 Formulation

For an infinite Kirchhoff-Love plate with a semi-infinite array of rigid fixed pins,
the equation of motion for the amplitude of flexural displacement U(r) is

∆
2U(r)−β

4U(r) = ∑
n

Anδ (r− r′n), (1)

with U(r′n) = 0. The diffracted field is of the form

U(r) =
∞

∑
n=0

AnGq
n(β ;r), (2)

where An are to be determined and Gq
n is a quasi-periodic grating Green’s function

defined in the form:

Gq
0(β ,x;κy,dy) =

i
8β 2

∞

∑
j=−∞

[
H(1)

0

(
β

√
( jdy)2 + x2

)
+

2i
π

K0

(
β

√
( jdy)2 + x2

)]
eiκy jdy . (3)

Here dy is the vertical period and κy is the corresponding Bloch parameter.

Fig. 1 The semi-infinite lat-
tice of rigid pins, consisting
of an array of infinite grat-
ings with period dy in the
vertical direction and hori-
zontal spacing dx. The single
semi-infinite grating is also
highlighted. A plane wave is
incident at an angle ψ for the
rectangular lattice illustrated
here.

j

d

d

y

x
x

y

Rp

The gratings are centred at points (ndx,0) for n≥ 0 (see Fig. 1) and we introduce
displacements at pins (ndx, jdy) such that bn = 0 for n ≥ 0 but are unknown for
n < 0. Referring to (2), A−n = 0 ∀n > 0 since there are no sources on the left-hand
side. For an incident plane wave, we have

eindxβ cosψ +
∞

∑
m=0

AmGq
m(β |n−m|dx;κy,dy) = bn, n ∈ Z. (4)
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Following the discrete Wiener-Hopf treatment of [9] for the Helmholtz problem for
a single semi-infinite grating, we employ the z-transform and sum over all n:

∞

∑
n=−∞

zneindxβ cosψ +
∞

∑
n=−∞

∞

∑
m=0

AmGq
n−m(β |n−m|dx;κy,dy)zn =

∞

∑
n=−∞

znbn. (5)

Defining A(z),K (z) as z-transforms, (5) becomes a single functional equation of
the Wiener-Hopf type:

F(z)+A(z)K (z) = B(z), where B(z) =
∞

∑
n=1

b−nz−n, (6)

and the kernel function K (z) is connected with the doubly quasi-periodic Green’s
function when z = eiκxdx with κx = β cosψ .

3 Illustrative examples

We present displacement fields associated with semi-infinite arrays using the dis-
crete Wiener-Hopf method outlined above and results obtained for a truncated semi-
infinite array analysed with a method attributable to [10]. We adopt a wave-vector

Fig. 2 A plane wave is incident at ψ = 0 on a semi-infinite lattice with dx = 1, dy =
√

2. (a, b)
Total displacement field for β = 5.40,5.45 respectively.

diagram strategy, analogous to that demonstrated by [11] for electromagnetism, to
show that the platonic crystal system supports localised interfacial waves, amongst
other dynamic effects associated with stationary and Dirac-like points on the dis-
persion surfaces for the doubly periodic array. For a plane wave incident at ψ = 0
on a semi-infinite array of gratings with dx = 1.0 and dy =

√
2 we plot the real part

of the total displacement field for β = 5.40 and 5.45 in Figs. 2(a, b). For β = 5.40
the localised interfacial wave clearly dominates any action inside the pinned region
whilst β = 5.45 supports both edge localisation and wave propagation.

Acknowledgements The authors thank the EPSRC (UK) for their support through the Programme
Grant EP/L024926/1.
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Texture determination from ultrasonic wave speeds for HCP 

and cubic materials 
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Crystallographic texture in polycrystalline HCP and cubic materials, often developed during 
thermomechanical deformations, has profound effects on properties at the macroscopic or component 
level. Given the respective natures of current detection techniques, a non-destructive, 
three-dimensional bulk texture detection method for these materials is yet to be developed. This talk 
aims to achieve this goal through systematic studies on the relationship between ultrasonic wave 
velocity and texture. 
 
The feasibility of such development is firstly reviewed via the combination of computational and 
experimental studies on exemplary HCP materials [1]. Numerical results obtained via a representative 
volume element (RVE) methodology reveal that the wave speed varies progressively and significantly 
with changing texture, and experimental ultrasound studies combined with EBSD characterisation 
demonstrate distinguished velocity profiles for samples with different textures. Thus the possibility of 
the development is proved by the combined results. 
 
A novel convolution theorem is then presented, which couples the single crystal wave speed (the kernel 
function) with polycrystal orientation distribution function to give the resultant polycrystal wave speed 
function. Firstly developed on HCP [2] and then successfully extended to general anisotropic materials 
[3], the theorem expresses the three functions as harmonic expansions thus enabling the calculation of 
any one of them when the other two are known. Hence, the forward problem of determination of 
polycrystal wave speed is solved for all crystal systems with verifications on varying textures, showing 
near-perfect representation of the sensitivity of wave speed to texture as well as quantitative predictions 
of polycrystal wave speed. More importantly, the theorem also presents a solution to the long-standing 
inverse problem for HCP and cubic materials, with proof of principle established where groups of HCP 
and cubic textures are recovered solely from polycrystal wave velocities through the theorem, and the 
results show good agreements with the original textures. Therefore the theorem opens up the possibility 
of developing a powerful package for bulk texture measurement and wave propagation studies in HCP, 
cubic materials and beyond. 
 
Further experimental validations of the proposed theoretical model are then conducted, with a series of 
samples made of typical HCP and cubic materials, including commercially pure (CP) Ti, copper, 
Ti-6Al-4V, examined by carefully designed experimental setup for the measurement of the angular 
variations of ultrasonic wave velocities. Texture information of the samples are extracted out from the 
measured velocities using the theoretical model, for the comparison and calibration against the set of 
information of the same samples measured independently by the well-established neutron diffraction 
technique. This part of the research is still an ongoing process. 
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An ultrasonic test bench for reproducing oceanic
sound fluctuations

Gaultier Real, Dominique Habault, Xavier Cristol, Dominique Fattaccioli,
Jean-Pierre Sessarego

Abstract Sound propagation in the ocean is subject to many phenomena of fluc-
tuations. The most critical ones are the internal waves which occur frequently and
induce fluctuations of the spatial distribution of the soundspeed. The aim of this
project was to develop and validate an experimental scaled model in a water tank in
order to test the performance of sonar techniques in the caseof sound fluctuations
[1]. It was therefore essential to propose a reproducible experiment in a controlled
environment. The protocol consists in transmitting an ultrasonic wave through a
slab. The input face of the slab is flat, the output face is “randomly” rough in order to
produce distortions of the received wavefront. The characteristics of the fluctuations
induced on the acoustic signals are controlled by tuning theroughness parameter of
the slab. A dimensional analysis has been developed in orderto be able to compare
results in the water tank and in an ocean perturbed by internal waves. Comparisons
between the statistical moments of the sound pressure in both media are presented.

1 Introduction

The internal waves and the fluctuations they induce on the sound speed in ocean and
therefore on sound propagation have been extensively studied theoretically and ex-
perimentally for several tens of years (see [2, 3] for example). The spatial variations
of the sound speed are characterised by vertical and horizontal correlation lengths
LV andLH of the order of several kms withLV ≈ LH/10. The temporal variations are
of the order of several hours. The aim of the project was to develop an experimental
scaled model of these phenomena in order to test sonar techniques. Let us under-
line that the objective was not to reproduce exactly the fluctuations phenomena but
rather to produce fluctuations qualitatively similar. The sound pressure fluctuations
are often described with 3 propagation regimes : The unsaturated regime (leading to
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phase fluctuations of the sound pressure), the fully saturated regime (which can be
described by uncorrelated eigenrays) and in-between the partially saturated regime.
Two main parameters are used to characterise these regimes :The strength parame-
terΦ and the diffraction parameterΛ . These parameters and the correlation lengths
of the sound pressureLh,v are used to link the experiment in the water tank and an
experiment in the ocean.

2 The experiment in a water tank

Fluctuations of the sound pressure in the water tank have been obtained by plac-
ing a slab between a source and a receiver (see fig. 1). The input face of the slab
(y =constant, on the source side) is flat. Its output face is characterised by a rough-
ness parametery = ξ (x,z). This parameter is chosen as a normal Gaussian function
of zero mean value and with standard deviation equal toξ0. A large number of slabs
were designed and realised at the laboratory, each one corresponding to one realisa-
tion of ξ . The source emits an ultrasonic wave of frequency 2.25 MHz. The receiver
is placed on a motorised rail in order to simulate measurements on vertical arrays.
The distance between source and receiver varies from 250 to 450 mm. Statistical
studies were carried out on the sound pressure measured at the receiver.

Fig.1 - Water tank experiment

In parallel, a dimensional analysis was conducted. The firststep was to define and
calculate equivalent parametersΦ̃ andΛ̃ in the case of the slab. They depend on the
characteristics of the experiment : mainly, roughness of the slab, frequency, distance
source-receiver. The second step was to calculate an analytical approximation of the
correlation lengths̃Lh,v of the sound pressure in the case of the slab. Finally, the
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characteristics of the experiment were tuned to obtain values ofΦ̃ , Λ̃ andL̃h,v equal
to those obtained for typical experiments of interest in an oceanic case.

3 The mutual coherence function

Figure 2 shows an example of comparison of the mutual coherence function (second-
order moment of the sound pressure) versus the spacing distance between two po-
sitions of the receivers on a vertical line. The spacing distance is related to the
acoustic wavelengthλ . The black curve (continuous line) corresponds to a simpli-
fied theory, the red circles are the measured values, the bluesquares and the violet
diamonds correspond to numerical simulations for the oceanic case and the slab case
respectively.

The experiment has been validated on several configurationscorresponding to
the 3 propagation regimes. The next step is to test sonar techniques in the presence
of fluctuations.
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Fig.2 - Mutual coherence function of the sound pressure - Partially saturated regime
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Domain Decomposition Method for scattering
problem in 3D elastic waveguides

Vahan Baronian, Anne-Sophie Bonnet-Ben Dhia, Sonia Fliss, Antoine Tonnoir

Abstract We consider the time-harmonic diffraction problem by an arbitrary lo-
calized perturbation in an infinite elastic waveguide. The Domain Decomposition
Method is used to derive an original formulation which is well adapted for a nu-
merical resolution. A coupling between a finite element representation in a bounded
domain containing the perturbation, and a modal expansion in unbounded regular
domains of the guide is achieved by introducing an overlap between the two do-
mains. We will detail how this approach offers the possibility to derive iterative
algorithms of resolution and leads to a complete efficient strategy of coupling.

1 Motivation

This work fits into the context of simulation of non destructive experiment by guided
waves. One major issue is to dispose of an efficient numerical method to compute
the interaction of guided waves with an arbitrary localized perturbation (cracks, in-
clusions, shape modification,...). In order to handle such range of defects, the finite
element method is classically used to model the area containing the perturbations.
The remaining question concerns the choice of the boundary condition that need
to be imposed on the boundary of the computational domain to avoid spurious re-
flections and get an ”efficient” method. Among the approaches used to bound the
scattering domain, a hybrid method [1], involving a coupling between the finite el-
ement and the modal representations of the solution, has been proposed few years
ago. Unfortunately, it gives rise to a small but partially dense linear system that
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can induce prohibitive computational cost, especially for large 3D configurations.
Moreover this method is limited for orthotropic medium. Our aim is to offer an im-
proved release of the previous version, that will reduce the computational cost (due
to the inversion) and overcome the anisotropic limitation. Therefore, a new class
of hybrid FE/Modal boundary operator has been designed, where the matching be-
tween the two representations is done on two separated boundaries and is said ”with
overlap” by analogy with the domain decomposition methods. This approach which
is suitable for an iterative resolution, has been already used in the case of acoustic
waveguide [2] and recently extended to elastic waveguide [3].

2 The radiation problem, geometry and notations

We consider an infinite elastic waveguide supposed to be homogenous, outside a
bounded region containing the defects. The total displacement field u has to satisfy
the following equations of the radiation problem

divσ(u)+ρω2u = f in Ω

σ(u).ν = 0 on ∂Ω
(1)

where ω is the pulsation, ρ the density and f the source term. The medium is
supposed to be anisotropic so that the stress tensor σ(u) is mapped to the strain
tensor ε(u) by the generalized Hooke’s law.

Fig. 1 Definition of the sub-domains used
in the formulation associated to the radiation
problem Fig. 2 Diffraction of an extensional mode by a

corroded area in a pipe

In our domain decomposition approach, the infinite domain Ω is subdivided in
two parts. The bounded domain Ωb = Ω ∩{0≤ z≤ z+b } that contains the perturba-
tion and the source f, and the semi-infinite regular domain Ω∞ = Ω ∩{R3,z≥ z+a },
where the radiated field can be expressed by using the modal expansion. Finally, the
overlap B+

l = Ωb∩Ω∞, of size l, which is delimited by the boundaries Σ+
a (z = z+a )

and Σ
+
b (z = z+b ), where an appropriate Transmission Condition (TC) will be im-

posed.
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3 A Hybrid FE/Modal formulations with overlap

Taking advantage of the regularity of Ω∞, a modal representation of the solution u
is given, involving the elastic modes U +

k and the unknown diffracted coefficients
a+k . From the displacement field u|B+

l
in B+

l , the traces of the displacement u|Σ+
a

and the stress σ(u)|Σ+
a

fields on Σ+
a can also be obtained. According to these data,

the coefficients a+k can be recovered as a function of u|B+
l

by using two different
relations on Σ+

a , named (Y ) and (O) in the following. Among the advantages offered
by the ”O” relation, the possibility to handle anisotropic material is also given.

u(x) = ∑
k≥0

a+k (u|B+
l
)eiβk(z−z+a )U +

k (xs) for z≥ z+a (2)

The relation (2) allows us to build new hybrid FE/Modal operators T+l
...→R(u|B+

l
)

(”...” stands for ”Y ” or ”O” ), that will be used to express the missing TC on Σ
+
b . A

so-called Robin TC is chosen: TC(?) = σ(?).ν +α ?,(such that ℑ(α) > 0) where
α is a ”tuning” parameter. Finally, a variational formulation is derived where the
unknown is u in the bounded domain Ωb.

Fig. 3 Evolution of the residual error vs number of iterations for different sizes of overlap

Thanks to the overlap B+
l , this formulation can be adapted in an iterative form and

be solved using the GMRES algorithm. Figure [3] illustrates the influence of l on the
convergence, for the operators T+l

Y→R and T+l
O→R. A significant result is obtained using

the T+l
O→R operator, since the convergence is independent of l. Therefore the size of

B+
l can be reduced to its minimum and leads to a complete efficient transmission

condition.
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Noise reduction in ultrasonic array imaging by
the DORT method

Eduardo Lopez Villaverde, Sébastien Robert, Claire Prada

Abstract In the present work, the Synthetic Transmit Aperture (STA) algorithm is
used to image flaws from corrupted signals recorded by a contact transducer array
probe. In order to reduce the structural or electronic noise, as well as artifacts due
to surface guided waves, the Decomposition of the Time Reversal Operator method
is performed before calculating STA images in the time domain.

1 Introduction

The Synthetic Transmit Aperture (STA) imaging [1, 2], also called Total Focusing
Method (TFM), is a delay-and-sum algorithm that provides optimized images in
Non-Destructive Testing (NDT). However, this method leads to a poor Signal-to-
Noise Ratio (SNR) in the case of noisy materials, such as coarse-grained steels of
the nuclear industry. The highly heterogeneous structure of these materials yields a
strong coherent noise that hides the defect echo and complicates its detection, even
at relatively low frequencies. The detection is also difficult in homogeneous materi-
als when they are characterized by a strong attenuation, such as plastic pipes made
of polyethylene. The main attenuation effect is a dramatic increase of the incoherent
electronic noise in STA imaging. In the present work, we propose to apply the De-
composition of the Time Reversal Operator (DORT is the French acronym) method
in order to improve the detection in presence of coherent or incoherent noise in the
data.
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2 Noise filtering principle with the DORT method

The DORT method consists of a singular value decomposition of the full array trans-
fer matrix K̂( f ) at each frequency [3]. In the ideal case of a point-like defect with a
low-level noise, K̂( f ) can be expressed as the sum of the two matrices:

K̂( f ) = σ1( f )u1( f )v1
†( f )+

N

∑
q=2

σq( f )uq( f )vq
†( f ), (1)

where σq( f ) is the q-th singular value, uq( f ) and vq( f ) are the received and trans-
mitted singular vectors, respectively. The first term in Eq. (1) is the matrix that
contains the spectral information of the defect, whereas the second term is a matrix
associated with the noise.

In practice, for materials with higher noise, the singular value associated with the
defect varies with the frequency. In order to track the index of this singular value,
denoted p( f ), we consider the delay law that focuses on the defect τττ ref. Then, p( f )
is determined through the cross-correlation between the delay laws τττq( f ), extracted
from vq( f ), and τττ ref. After identification of p( f ), we redefine a new matrix:

K̂′( f ) = σp( f )( f )up( f )( f )vp( f )
†( f ). (2)

In the time domain, the associated full array matrix K′(t) contains only informa-
tion about the defect [4]. The application of the STA algorithm to K′(t) provides an
image with a reduced noise.

3 Imaging in coarse-grained steel: coherent noise filtering

In the case of a coarse-grained steel, the data contain coherent noise, which is due
to the structure of the material. The singular value distribution of K̂( f ) for a hole at
40 mm depth in this sample is displayed in Fig 1(a). The significant singular value
around 1.1 MHz characterizes the defect. The other significant values at 0.5 and 0.8
MHz, are associated with the cross-coupling and the Rayleigh waves, respectively.
The dotted curve σp( f )( f ) is obtained by tracking the index p( f ). Figures 1(b) and
1(c) display the STA images calculated from K(t) and K′(t), respectively.

4 Imaging in high density polyethylene: incoherent noise filtering

The data recorded inspecting a high density polyethylene [see Fig. 2(a)] are cor-
rupted by an incoherent electronic noise. Because of the strong attenuation in this
material at 5 MHz, the echoes amplitudes get close to the electronic noise. First
obtained results are shown in Figs. 2(b) and 2(c).
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Fig. 1 (a) Singular values distribution of K̂( f ); (b) STA image; (c) STA with DORT filtering.
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Fig. 2 (a) Polyethylene pipe with butt fusion joint; (b) STA image; (c) STA with DORT filtering.

5 Conclusion

The proposed approach selects correctly the spectral content associated with the
defect. It is applicable to materials with structural noise, and attenuating materials.
The STA image calculated from the filtered matrix present a significant reduction of
the noise, either coherent or incoherent.
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Experimental and numerical studies of the non-
linear interaction between a longitudinal wave 

and contact interface 
 

Abdelkrim Saidoun, Anissa Meziane, Mathieu Rénier, Christophe Bacon, Fan Zhang, 
Henri Walaszek 

 
 

 
Abstract Early detection and characterization of damages in materials are         
important to control the durability and reliability of parts and materials in service. 
Although linear ultrasonic methods are sensitive for detecting and sizing open 
cracks, they failed to detect closed cracks. An alternative to linear ultrasonic 
methods is to use nonlinear methods, which have shown to be effective for this 
kind of defects. Nowadays, there are several nonlinear acoustic techniques used in 
non-destructive evaluation. In this study the harmonic generation technique is 
considered. Measurements were carried out on a real fatigue crack. Numerical 
analysis was performed using a 2D FE model describing the interaction between 
plane longitudinal acoustic wave and a contact interface. Different contact inter-
face profile had been studied, showing specific evolution of the amplitude of the 
second harmonic as function of applied force.  
 
Introduction The conventional techniques often rely on the linear property modi-
fications of ultrasonic waves near a defect, such as reflection, attenuation, mode 
conversion etc, for crack detection. However, these linear features are reported to 
be not sensitive enough to detect closed cracks. On the other hand it has been no-
ticed that in a great variety of structural materials, micro crack or closed cracks 
can produce very significant nonlinear effect. Using the nonlinear behavior of the-
se defects, nonlinear ultrasonic techniques such as nonlinear resonance [1] higher 
harmonic generation [2] and frequency modulation [3] have been shown to be sen-
sitive to micro cracks or closed cracks.  

In this study the harmonic generation technique is considered. If the magnitude 
of the incident wave is sufficient to activate clapping between the tow interfaces 
of closed crack, higher harmonics appear in the frequency spectrum of transmitted 
and reflected waves. This effect, due to Contact Acoustic Nonlinearity (CAN) [4], 
is of increasing interest for characterization of closed cracks or imperfectly bond-
ed interfaces [4,5]. 

Measurements were carried out on a CT specimen containing a fatigue crack 
using harmonic generation method. Numerical analysis was performed using a 2D 
FE model describing the linear propagation of a plane longitudinal acoustic wave 
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and its interaction with contact interface. In order to study the influence of the 
morphology of contact interface on the non-linear interaction with the acoustic 
wave, different interface morphologies were considered, showing specific evolu-
tion of the amplitude of the second harmonic as function of applied force. 
 
Specimen and experimental set-up 

Figure.1.a shows dimensions of the specimen used in our investigation, which 
is a compact tension (CT) specimen of steel material. This specimen was fatigue 
tested; it contains a crack of 44mm length. 
 

Figure. 1. (a) Geometry of the specimen. (b) Experimental set-up. 
 

Figure.1.b shows the experimental set-up. A force [0.5,5] kN was applied to 
the specimen in order to close the crack. A 1MHz longitudinal transducer was 
used as transmitter; 2MHz longitudinal transducer was used as receiver to measure 
the first and second harmonic components in the transmitted wave. The transmit-
ted signal was a 1MHz tone-burst of 10 cycles.   

 
 
 
 
 
 
 
 
 
 

Figure. 2. Experimental results (a) Evolution of transmission and (b) the ampli-
tude of the second harmonic as function of the applied force for 3 different tests. 

 
Figure.2 shows the evolution of the transmission and the second harmonic as 

function of the applied force. The transmission of the wave increases with com-
pression. The evolution of the ratio A2/Aincident shows an optimal value at F=3.4kN. 
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Compared to numerical result obtained by Hirose [6] for a smooth contact inter-
face, it is noted that A2/Aincident is very low, and its evolution show some differ-
ences. A possible way to explain this differences is the geometrical effect at the 
interface (roughness, non perfect planarity…). Numerical analysis was conducted 
considering different morphologies of contact interfaces to investigate their influ-
ence on of the evolution of transmission and the second harmonic as function of 
the applied force. 

Numerical Analysis 
FE model using the software Plast2 [6] is used to study the interaction between 

an acoustic wave and contact interface between two identical homogeneous iso-
tropic solids. First, the interfaces are considered planar, initially closed (figure.3.a) 
and initially opened (figure.3.b). In real contact interface, open and closed zones 
coexist on interface. In order to account of this, a first step consist in considering a 
“convex” surface on plane one (figure.3.c), and a “concave” surface on plane sur-
face (figure.3.d).  The unilateral contact law with Coulomb friction is applied to 
the interface. The contact algorithms are based on forward Lagrange multipliers. 
The friction coefficient μ= 0.3. Force is applied in the upper part of the two 
blocks. A plane wave of five cycles is generated on the top face of the solid. The 
central frequency of this pulse is 1MHz. The wavelength of the incident waves is 
thus λ= 6 mm. The incident stress is 1MPa. 
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Figure. 3. Model used for the interaction between the wave and the contact inter-
face. (a) Closed planar interface. (b) Opened planar interfaces. (c) Concave inter-

face. (d) Convex interface. 

 Figure.4.a shows the evolution of the transmission and the second harmonic as 
function of the applied force in the case of closed planar interface. The transmis-
sion of the wave increases with compression up to F=7.5kN. The evolution of the 
ratio A

2
/A

incident
 have an optimal value at F=3kN.  

In the case of the model with the convex interface, the evolution of                
A2 / A1transmitted as a function of the applied force is close to the same evolution ob-
tained experimentally. It shows two different regimes (figure.4.b), limited at 
F=3.25kN and an optimal value at F=5kN. 
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Figure. 4. Evolution of transmission and the second harmonic as function of the 

applied force in the case on a) Planar interfaces. b) Convex interface. 
  
To explain the origin of the two observed regimes, an analysis of the harmonic 

sources at the interface were performed. It shows differences on distribution of 
these sources between the two regimes. Regime 1 corresponds to the second har-
monic generation mainly on the edges of the interface, while the regime 2 corre-
sponds to the second harmonic generation mainly at the center of the interface. 
 
Conclusions  

In this paper, the detection of closed cracks was investigated using the higher 
harmonic generation method. An evaluation of the second harmonic in the trans-
mitted wave through a fatigue crack has been described. The evolution of 
A2/Aincident as function of the applied force shows an optimal value, which is char-
acteristic of CAN. Numerical analysis showed that it shows that the geometry of 
the interface has an effect on the non-linear interaction between the acoustic wave 
and the contact interface. 
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Abstract: The Centre for Ultrasonic Engineering is based in the University of Strathclyde 
which is in the heart of Glasgow in the UK (see www.strath.ac.uk/eee/research/cue/).  Tony 
Mulholland has worked within this group for over 15 years and oversees the mathematical 
modelling activities.  The group specialises in the development of new ultrasonic transducers 
and the application of ultrasonic transducers.  It consists of more than 50 academics, 
researchers and technicians.  The research interests are very broad and include nondestructive 
testing, medical imaging and therapies, ultrasound in biology, industrial process control, 
robotics and automation, and sonar.  As such CUE is comprised of engineers, biologists, 
physicists, chemists, material scientists, and mathematicians. In this talk I will provide some 
insights into the role that mathematics plays in CUE and talk about our current work in both 
transducer design and in ultrasound applications.  To illustrate the breadth of mathematics that 
one can use in this field I will discuss projects that have used notions from graph theory, 
renormalisation, the fractional Fourier transform, nonlinear elasticity, numerical analysis, 
functional analysis, scattering theory, inverse problems, and uncertainty quantification. 



 



On crack detection in NDT using Love waves

Philippe Destuynder and Caroline Fabre

Abstract In a large number of problems, one has to deal with bimaterials. It is the
case for instance for water pipes whose main body is in steel. A non corrosive coat-
ing is set on the inside of the pipe in order to avoid rust developments. It happens
frequently that cracks start from the interface between the two materials and propa-
gate along this interface. Even if classical ultrasonic inspections enable one to detect
these cracks, the handling is long and costly. Therefore, the use of guided waves has
been the object of many research in order to define a strategy for exploring long
range pieces of structures order for reducing the exploration time, specially for long
pipes. The goal of this presentation would be to suggest a criterion based on con-
vective derivative of PDEs which could contain information on the existence and
the position of such a crack. An optimal control method can then be used to fit the
experimental data with the results derived from a simulation. Nevertheless, the cri-
terion suggested is not perfect and there can exist cracks which are not seen by the
criterion. In fact this depends on the frequencies used in the detection by ultrasonic
waves. After a short presentation of the method and the criterion, the presentation
focuses on the hidden cracks which can not be be detected for a particular given
frequency.

1 Introduction

Following the ideas of many researchers in NDT, this presentation aims at giving a
mathematical base of new methods introduced for instance in [1], [2], [3], [4], [5]
and many others. Let us consider a rectangle -say R- as shown on figure 1. Let us
assume that there is a crack parallel to the axis bearing the coordinate x1. Its two
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extremities are at points A and B with abscissae a and b. Both sides of the segment
AB are the crack lips and denoted by Γf . The wave equation that we consider is set

on the open set Ω =
o

R \Γf . On the boundary of the rectangle R -say Γ1- the free
edge condition is assumed. The unit normal outwards Ω and along its boundary is
ν . Therefore the Helmholtz model is the following one, where c is the wave velocity
(which is piecewise constant for a bimaterial) and u the transverse displacement to
the plane containing Ω . 

−ω2û−div(c2∇û) = f̂ in Ω ,

∂ û
∂ν

= 0 on ∂Ω = Γf ∪Γ1,

(1)

Using an eigenmodes expansion (the eigenvectors being denoted by {wi} and the
eigenvalues by {λi}):

û(ω,x) =
∑
i≥1

∫
Ω

f̂ (ω,x)wi(x)

λi−ω2 wi(x).

1.1 The solution of the wave model

The computation of the eigenmodes of the structure can be performed analytically
when there is no crack, even (and mainly), for a bimaterial as shown on figure 1
with two different velocities. In this case, one obtains two families of eigenvectors.

Fig. 1 The neighborhoods of the crack tips A and B. The local polar coordinates are respectively
(rA,θA) and (rB,θB). The angles θA and θB are counted from the interface line Γi.
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One contains the so-called Love stationnary waves which are mainly localized in the
open set Ω− if c− < c+ with an exponential decay inside Ω+ from the separation
line Γi. The second one contains global waves and their energy is developed in the
whole domain Ω . But from a local analysis, it is also possible to describe the local
behaviour of û. More precisely, one has:

Theorem 1. Let û be the solution of (1). One can write (c is discontinuous):

û(x,ω) =
KA(ω)

c2
√

rA sin(
θA

2
)+

KB(ω)

c2
√

rB sin(
θB

2
)+ ûR(x,ω), (2)

where KA (respectively KB) is the stress intensity factor at point A (respectively B)
and ûR is a smooth function. Furthermore, one has the following relationship which
only requires boundary measurements and which is the criterion suggested for crack
detection:∫

Γe∪Γs

[−ω
2û2 + c2| ∂ û

∂x2
|2]ν1−

∫
Ω

q
∂ û
∂x1

=
π

8
(

1
c2
−
+

1
c2
+

)(K2
B−K2

A). (3)

The problem is now to detect among the Love waves (wL
i ,λ

L
i ) which ones could be

used for detecting a crack along the interface Γi. Furthermore, if the crack length is
small enough, the eigenvectors wL

i can be replaced by those computed without crack.
This is the discussion which is carried out in the presentation. The point is to avoid
the case KA =±KB for which the crack is not visible by the criterion suggested.

2 Conclusion

The criterion introduced in theorem1 is an energetical quantity which enables to
detect the existence of a crack in a bimaterial. This criterion can be used jointly with
Love waves in order to detect a crak as soon as the frequencies are well chosen. But
the position of the excitations should also be correctly adjusted.
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Imaging defects in an acoustic waveguide using
time-dependent surfacic data

Vahan Baronian, Laurent Bourgeois, Arnaud Recoquillay

Abstract In this lecture, we are interested in the possibility of using the Linear Sam-
pling Method [1] in its modal form [2] to image defects in an acoustic waveguide
using realistic scattering data, that is data coming from sources and receivers on the
surface of the waveguide in the time domain.

1 The Linear Sampling Method: a modal formulation

We consider a two dimensional waveguide Ω = Σ ×R of section Σ = (0,h). We
denote Γ = Γ0∪Γh the boundary of Ω , with Γ0 = {0}×R and Γh = {h}×R. Every
solution u to the equation ∆u+k2u= 0 in Ω with boundary condition ∂ν u= 0 on Γ ,
where ν is the outward unit normal, can be decomposed along the guided modes u±n ,
the sign depending on the way of propagation. A finite number N of those modes
are propagating, the other ones are evanescent. We then consider a defect D inside
the guide which lies between two sections Σ±R = Σ ×{±R}, R > 0. The scattered
field us±

n associated to the incident mode u±n is solution of the following forward
problem: 

∆us±
n + k2us±

n = 0 in Ω ,
∂ν us±

n = 0 on Γ ,
us±

n =−u±n on ∂D,
(RC)
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with (RC) a radiation condition. The data in this case are the components of the scat-
tering matrix S , that is the modal projections on the two sections Σ±R of the scat-
tered fields us±

n , the number of lines and columns being limited to 2N. The Linear
Sampling matrix U is obtained by multiplying S by a diagonal matrix depending
only on the waveguide. Solving the system U h = m(z) for all points z ∈ Ω , where
m is a vector function given explicitly, provides an indicator function of the defect.

2 The case of surface solicitations and measurements

The method shown above needs data within the waveguide, which is not realistic.
Let (g±i (x))1≤i≤M = (g(x− x±i ))1≤i≤M be a family of source functions for an even,
compactly supported function g defined on R with x±i =±(R+ iδ ). The diffraction
problem satisfied by the total field u is:

∆u+ k2u = 0 in Ω ,
∂ν u = g±i on Γh
∂ν u = 0 on Γ0,
u = 0 on ∂D,
(RC).

(1)

The corresponding scattered field us is u−ui, where ui solves the same problem (1)
as u without the boundary condition u = 0 on ∂D. Our data are the components of
a matrix M defined by the scattered fields measured at points (h,x±j )1≤ j≤M for all
sources (g±i )1≤i≤M . The measurement matrix M is related to the LS matrix U by
the relationship

M =−RU E T , (2)

where R and E are the reception and emission matrices. These matrices mainly
depend on a Vandermonde matrix the conditioning of which strongly depends on the
number 2M of sources and receivers and on the minimal distance δ between them.
Inverting the system (2) enables us to compute U and then to apply the modal LSM
as in section 1.

3 The case of data in the time domain

In the time domain, we consider the following problem:
(1/c2)∂t2u−∆u = 0 in Ω × (0,+∞),

∂ν u = g±i (x)χ(t) on Γh× (0,+∞),
∂ν u = 0 on Γ0× (0,+∞),
u = 0 on ∂D× (0,+∞),

u = ∂tu = 0 on Ω ×{0}.
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The data consist of the corresponding scattered fields measured at the same points
as before in the time interval (0,+∞). Here, χ(t) is suitably chosen so that the fre-
quencies for which the group velocity vanishes are avoided. By applying a Fourier
transform to our data, we recover the previous system (1) at a given pulsation ω ,
with k = ω/c. We have now multi-frequency data, which allows us to image the
defect with a better accuracy. In the figures below, N = 12 for the image using one
frequency and it is varying between 8 and 12 for the one using multiple frequencies.

Fig. 1: Defect identification using one
frequency

Fig. 2: Defect identification using mul-
tiple frequencies

4 Perspectives

Our next goal will be to adapt this method to an elastic waveguide, starting from the
method developped in [3]. We then want to try it on experimental data.

Acknowledgements The artificial data were obtained thanks to the code Ondomatic developed at
CEA by Alexandre Impériale.
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Introduction 
The increasing use of adhesively bonded joints requires non-destructive evaluation 
methods to be developed, mostly for safety reasons. An adhesive joint can be di-
vided into two sensitive zones that may cause mechanical failure: the body of the 
adhesive layer (cohesive zone) and the interphase between that adhesive and one 
of the substrate (adhesion zone). Weaknesses of these cohesive or adhesive zones 
can come, for example, from an incomplete curing of the adhesive or from inap-
propriate initial treatment of the substrate surface, respectively. The present re-
search attempts to characterize mechanical properties, which are representative of 
the adhesive and cohesive states of adhesively bonded assemblies, using a 
through-transmission ultrasonic method. Inverse problems are then solved to infer 
the elastic moduli of the adhesive layer. The measurement of the transmitted 
acoustic field and estimation of elastic moduli are performed for several angles of 
incidence (θ) in a reduced experimental frequency bandwidth. For assemblies pre-
senting a low level of adhesion, an apparent anisotropy of the adhesive layer mod-
uli is observed, and thus reveals the presence of such defects. Furthermore, the in-
terfacial stiffness coefficients are assessed.  

1) Elastic moduli measurement principle  
The elastic moduli measurement principle is presented in Figure 1. An incident 
plane wave, radiated in a water tank by a large transducer (E) is transmitted 
through a single or multi-layered plate with an incidence angle θ and then re-
ceived by a second transducer (R). The measured spectrum AT (θ, f) of the trans-
mitted field is then computed for various incidence angles. In order to infer the 
elastic moduli of one of the layers, assuming that the elastic properties of the oth-
ers layers are known, an optimization process, based on theoretical plane wave 
transmission coefficient, is proceed. 
 

 
Figure 1: Measurement principle 
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The theoretical calculation of the transmitted acoustic field is based on the surface 
impedance matrices method [1]. The plane wave transmitted field includes all in-
ternal echoes inside the multilayer. Its modulus is given by:  

ATh (θ, f ) = TTh (θ, f ).AI
Exp( f )  (1) 

where AI (f) is the measured spectrum AI (f), obtained by removing the multi-
layered plate. 
The model takes into account the anisotropy and viscoelasticity of materials using 
the concept of heterogeneous plane waves and complex viscoelasticity moduli 
Cij=Cij’+I.Cij”[2], with continuity of stress and displacements at different interfac-
es of the multilayer. The Cij’ and Cij” represent the anisotropic stiffness and the 
anisotropic viscoelasticity constants respectively. The elastic material properties 
of one of the layer are optimized using a combination of Newton-Raphson [3] and 
Simplex [4] algorithms. For a given plane of incidence (P12 in the present study) 
and using measurement obtained for various angles of incidence, the 4 moduli 
(C11, C22, C12 and C66) can be measured. A calculation of the error is performed us-
ing the insensitivity matrix [5]. In this paper, a study of the influence of the inter-
facial properties on the measurement of an adhesive layer between two substrates 
is presented. 

2) Results and discussion 
In this purpose, six assemblies have been made. The substrates are all made of al-
uminium (2 mm thick). 3 of the assemblies are made of a 100% cured epoxy adhe-
sive layer (1mm thick), while the epoxy is only 80% cured for the 3 others. The 
viscoelastic properties of those components have been measured on single plates 
using the time-of-flight method. The results are listed on Table 1. As expected, the 
measured elastic moduli show the isotropic of epoxy and aluminium samples. 
Lower values for the incompletely cured epoxy are obtained. 
Table 1: Elastic moduli measured on individual samples. The real parts are estimates at ±1% and the 
imaginary parts are measured equal to 3% of real parts.   

Medium ρ (g/cm3) Thickness (mm) C11 (GPa) C22 (GPa) C66 (GPa) C12 (GPa) 
Aluminium 2.76  2 107  109  26  55  
Epoxy100% 1.16 2.93 7.77  7.75  1.71  4.35  
Epoxy 80% 1.16 2.96 7.56  7.52  1.53  4.25  

 
Then for each level of curing, three different surfaces treatments are applied be-
fore assembling, in order to vary the quality of adhesion: (1) degreasing, sand-
blasting and Silane treatment (reference sample with nominal adhesion properties, 
noted “DSSi”), (2) degreasing and sandblasting (intermediate adhesion level, 
“DS”) and (3) degreasing only (very weak adhesion, “D”). 
a) Numerical study of the influence of interfacial properties on the determi-

nation of elastic moduli of an adhesive between two substrates  
The procedure used is described as follow: First, we model the bonded assembly 
by 5 layers (2 Aluminium substrates and 1 epoxy layer with Cij listed on Table 1) 
wherein the interphases are modelled by two interfaces thin isotropic layers thin 
(hint= 1 µm), with elastic moduli Cij

int= α. Cij,epoxy where α is a parameter intro-
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duced in order to model interfacial degradation (α ≤1). For nominal interfacial 
properties the values of interfacial elastic moduli (C11

int, C66
int) are equal to the 

elastic moduli of the adhesive layer.  
Then, the simulation of the transmission of plane waves through the assembly is 
performed for different θ and the computed transmitted acoustics fields are then 
considered as experimental results for the previously introduced optimization pro-
cess. The optimization process is then performed assuming perfect interfaces, 
providing the apparent elastic moduli Cij

app of the adhesive layer.  

 
Figure 2: Evolution of elastic moduli of an epoxy (80% cured) between two substrates vs the state of 

degradation of interphases 
The evolution of apparent elastic moduli of epoxy adhesive between two sub-
strates, function of the parameter α, which indicate the state of degradation of in-
terphases, is presented in Figure 2. We observe a decrease of all apparent elastic 
moduli of adhesive epoxy with an anisotropy when the interphases are degraded 
(α ≈ 10-2), This apparent anisotropy is indicative of the presence of anomalies at 
interphases. The same evolution is obtained for the epoxy 100% cured.  
b) Experimental validation 
Measurements are done on the six samples models, manufactured and described in 
section 1. The experimental setup shown in Figure 1 is used to determine the ap-
parent elastic moduli of the adhesive layer between the two substrates. The trans-
mitted spectra (in a 0,5 to 1,5 MHz frequency range) through the assembly are 
measured for different θ. The apparent elastic moduli measured for epoxy adhe-
sives 80% cross-linked are shown in Table 2. The experimental results confirm 
those previously obtained by simulations: all the apparent elastic moduli decrease 
when the interphases are slightly or severely degraded, with C11

app < C22
app, show-

ing the apparent anisotropy confirmed by the fact that C12
app≠ C11

app-2C66
app. Thus, 

the surface treatment applied has therefore a significant influence on the determi-
nation of the elastic moduli. When the joint has nominal interphases, the adhesive 
layer’s apparent elastic moduli located are close to those obtained on the individu-
al adhesive sample. When the joint has slightly or severely degraded interphases, 
slight or strong apparent anisotropy on elastic moduli of adhesive layer is ob-
served. The same results are obtained for epoxy adhesive 100% cross-linked. 
Conversely, keeping perfect interfacial properties, a weakness in the cohesive 
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properties (uncompleted cured state) of the adhesive layer is manifested by a de-
crease of all the adhesive layer apparent elastic moduli, with an apparent isotropy.  
Table 2: Presentation of Cij

app for the epoxy adhesives layers 80% cross-linked measured on the differ-
ent bonded joints assemblies (Surface T: Surface Treatment and h: thicknesses). The error are evalu-
ated from the insensitivity matrices 

 
c) Characterization of the interfacial properties 
We focus in this section, on the evaluation of the interfacial stiffness (kL= C11

int/hint 
and kT=C66

int/hint) representative of the state of adhesion for each surface treatment 
of substrates. The interfacial stiffness’s are obtained from the measurements of the 
transmission coefficient for a given θ using least squares minimization algorithm 
[6], assuming now that the adhesive layer’s Cij correspond to the apparent ones 
measured on the reference DSSi samples (Table 2). The kL is estimated at normal 
incidence (θ=0°) and the kT is obtained at oblique incidence (θ=15°). For bonded 
joints made with epoxy adhesive 80% cured, Table 3 presents the set of estimated 
interfacial stiffness values, which are representative of the adhesion state at the in-
terfaces. The optimization results show that, significantly lower interfacial stiff-
ness values are obtained when interphases are degraded. The transverse stiffness 
appears to decrease more than the longitudinal one. We can observe that, for the 
same state of the surfaces treatment of the substrates before assembling, whether 
the adhesive epoxy is 100% or 80% cross-linked, we get the same interfacial elas-
tic moduli values (Table 3). 
Table 3: Presentation of the interfacial stiffness values estimated for the six samples assembled with an 
epoxy adhesive partially and totally cross-linked (1PPa=1015 Pa). 

 DSSi100 DS100 D100 DSSi80 DS80 D80 
kL (PPa/m) 2.5 0.225 0.10 2.5 0.225 0.135 
kT (PPa/m) 1.6 0.04 0.025 1.6 0.03 0.02 
        
Conclusion 
The measurement of the adhesive layer apparent elastic moduli, for various inci-
dence angles and without any isotropy assumption could provide an indication 
about the presence of interfacial weaknesses. Furthermore, if the adhesive layer’s 
elastic moduli are known, an evaluation of the interfacial stiffness is possible. The 
results obtained show that, both the longitudinal and transverse interfacial stiffness 
are sensitive to the surface treatment of the substrates.  
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Surface 
T h (mm) C11(GPa) C22 (GPa) C66(GPa) C12(GPa) 

DSSi80 1.09 ± 0.01 7.4±0.06 7.1 ± 0.5 1.7 ± 0.1 4.4 ± 0.2 
DS80 0.78 ± 0.01 6.2 ± 0.2 6.8 ± 0.9 1.4 ± 0.2 4.1 ± 0.4 
D80 0.75 ± 0.01 5.5 ± 0.1 6.8 ± 0.9 1.3 ± 0.2 3.9 ± 0.4 



Design of acoustic beam shifters and related
experiments

Rowley W.D., Parnell W.J., Abrahams I.D. and Voisey S.R.

Abstract In this talk we discuss the design process and paths to realisation of an
acoustic metamaterial beam shifter. We will find that an anisotropic effective mass
density tensor is required, and look at how this can be achieved by layered media
in the homogenised limit. We discuss the challenges in realising such a material in
both the cases of water and air surrounding the device.

1 Introduction

Transformation acoustics is a widely used technique, that provides the required ma-
terial properties in order to achieve a given coordinate transform on a pressure field
[1]. We consider a virtual isotropic space(x′,y′,z′) and choose a coordinate map-
ping onto the physical space(x,y,z), that describes the desired action of the wave-
manipulating device. We then apply this mapping and notice that Helmholtz’ equa-
tion can be regained on the correct choice of a new effective mass density and bulk
modulus.

In this talk we will introduce the technique of transformation acoustics as a way
of finding the required material properties of a given wave-manipulating device. We
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will apply this theory to the design of an acoustic beam shifter, a device that shifts
incident sound pressure waves in space, [1].

In order to find the required material properties for a beam shifter we want to
transform a region of the plane,x′ ∈ [0,a], as,

x = x′, y = y′ + f (x′), z = z′. (1)

In the following we will fix the definition off (x) = bx/a, this defines a linear shift of
heightb over the device thicknessa. The Jacobian can be calculated to determine the
required effective properties of the beam shifter. The Jacobian has unit determinant
and so the bulk modulus of our beam shifter must be that of the background, that is
the material in the undeformed region surrounding the device, the density must be
anisotropic and is given by,

ρ−1
e f f =











1
b
a

0

b
a

1+
b2

a2 0

0 0 1











. (2)

Fig. 1 Should we be able
to realise these properties,
an incident pressure field
of arbitrary type will enter
the material with perfect
transmission and leave it
again, directed as it was
before entering, but at a new,
shifted height. We focus on
three such incident pressure
fields: a plane wave, point
source and Bessel beam [2],
as shown here.

2 Realisation through layered media

In the homogenised limit an infinite periodic array of two layered fluids behaves
as a homogeneous anisotropic material. We show that under certain circumstances
with the correct choice of material layers this layered material can become a beam
shifter. We will see that the direction of the material layering and the beam shift are
not, in general, aligned.

We discuss the material properties required to construct a beam shifter from lay-
ered materials when the host phase is water. We see that it canbe achieved by using
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a layer of material with density less than that of water. We then consider the host
phase to be air. Once again, in the case of layered materials we will need a material
with lower density than air, which poses a challenge.

3 An imperfect impedance condition

In order to realise the beam shifter in a host phase of air, we attempt to sacrifice the
perfect impedance condition in order to widen the range of possible materials. This
is done by introducing a scale factorn to the required material properties. In this
sense the properties we are aiming to achieve are no longer the properties required
to shift a beam in air, but the properties required to shift a beam in a fictitious
material that has the material properties of air scaled by a factorn. In this case we
see that a layer with greater stiffness and density than thatof the background can be
utilised, these can then be selected in order to maximise thetransmitted field.

4 Other roads to realisation

We consider alternative ways to realise the anisotropic mass density condition re-
quired to create a beam shifter. We still use a layered mediumbut allow the second
material to be made of an infinite array of cylinders made of two different materi-
als [3]. In the case of the layered media we could only tune thematerial properties
of the additional layer and the volume fraction. Here, however we are able to tune
the material properties of an arbitrary number of fibres withelliptical cross-section
and their volume fraction[4]. We can then consider an even broader class of materi-
als, where we can then alter the above parameters, the aspectratios of ellipses and
their relative alignment. This increase in degrees of freedom means that the effective
materials that can be created in this way are much richer.

Acknowledgements This work was carried out at the University of Manchester andfunded
through a CASE award studentship awarded by the EPSRC and Dyson Ltd.
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Conformal mapping for the scattering by a
rough surface

G. Favraud and V. Pagneux

Abstract We consider the scattering of an acoustic wave from a periodic rough
surface. The method we propose is based on the use of a conformal mapping and of
the multimodal admittance method. Showing very good convergence (exponential),
the method allows us to solve scattering at high frequencies and also to find trapped
surface wave propagating above the rough surface. A simple perturbation expansion,
based on a small roughness approximation, is also developed.

1 The method: conformal mapping and multimodal approach

When a wave is incident on a rough surface it implies a complex scattering process
[1, 2, 3] and efficient methods are still welcome to improve the understanding of
this scattering (surface waves, high frequencies scattering, etc ...). In this work, we
present a method [4] based both on conformal mapping and mutlimodal admittance
method.

We consider the scattering of an incident plane wave by a rigid periodic rough
boundary with Neumann boundary condition (the case of Dirichlet boundary con-
dition might be treated as well). The boundary is represented by a curve C in the
(X ,Y ) plane: it is 2π—periodic in the X direction (fig. 1(a)). The domain considered
is the upper infinite half plane above this curve C . In the harmonic regime (e−iωt ),
the total field Φ satisfies the Helmholtz equation with rigid boundary condition:{

∆XY Φ + k2Φ = 0
∇Φ ·N = 0 on C ,

(1)

G. Favraud and V. Pagneux
Laboratoire d’Acoustique de l’Université du Maine (LAUM), UMR CNRS 6613, Avenue Olivier
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2 G. Favraud and V. Pagneux

where k is the wavenumber and where ∆XY and ∇ are the Laplacian and the gradient
operators with respect to the (X ,Y ) variables, and N is the unit normal vector to
CXY . We then consider the conformal mapping that maps the rough surface C to the

Fig. 1 (a) physical plane (X ,Y ) (b) computational plane (x,y). The mapping function Ω transforms
the computational plane into the physical plane. The rough boundary C is mapped to the flat
boundary D . An index appears in the computational domain.

flat surface D = {y = 0 | x ∈ [0,2π]} ( fig. 1(b)). The conformal mapping is defined
by:

Z = Ω(z), (2)

where Ω is a periodic function of the form Ω(z) = z + f (eiz). We impose that
f (0) = 0 in order that the mapping tends to the identity for y→ ∞ (eiz→ 0). This is
important since it allows to localize the effect of the mapping near the boundary at
y = 0. The function Ω maps the computational plane (x,y), in which the problem
will be solved [fig. 1(b)], to the physical plane (X ,Y ), in which the problem is ini-
tially stated [fig. 1(a)]. In the computational plane (x,y) the problem is now written
as : {

∆xyΦ + k2n2Φ = 0
∂

∂y Φ = 0 at y = 0 (3)

where n(x,y) =
∣∣ dZ

dz

∣∣ . It appears that n(x,y) acts as an equivalent spatially varying
index. An important aspect of the conformal mapping is that, in the computational
plane, the boundary condition becomes very simple.

To solve the scattering problem, Φ is now split into the sum of an incident field
ϕin and of a scattered field ϕ ( Φ = ϕin +ϕ ), where the incident field is supposed
to be of the form of a plane wave in the physical plane (ϕin = eiα0X−iβ0Y

√
2π) with

α2
0 +β 2

0 = k2. Owing to the 2π—periodicity of the problem in the x direction, and to
the form of the incident field, the scattered field is quasi-periodic in the x direction:
ϕ(x,y) = ϕ(x + 2π,y)e2iπα0 , and the problem can be solved on the semi-infinite
vertical strip [0,2π]× [0,+∞). The scattered field ϕ is decomposed as a Fourier
series

ϕ(x,y) =
+∞

∑
n=−∞

ϕn(y)gn(x), (4)
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where gn(x) = eiαnx/
√

2π with αn = α0 + n. This leads naturally to coupled mode
equations along the axis y for the coefficients ϕn. These equations cannot be directly
integrated numerically because of the presence of evanescent modes which are re-
sponsible for numerical instability. Therefore, we introduce the admittance matrix Y
which can be seen as a matrix representation on the Fourier basis of the Dirichlet to
Neumann operator. The equation governing the variation of the admittance matrix
along y is a Riccati equation that has to be solved from the radiation condition. This
is the principle of the multimodal method [5] that is used to solved the problem.

2 Some results: scattering and trapped surface waves

Typical results are shown in Figure 2. It has been verified that we have an exponen-
tiel convergence with respect to the number N of Fourier components that is used in
equation 4.
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Fig. 2 Left: scattering by a rough surface. Right (a)-(c): different exemples of surface waves
trapped by a rough surface
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A new scheme for the effective properties of
complex composites

D. Joyce, W. J. Parnell, I. D. Abrahams

Abstract In this work a new, alternative method to model the effectivemacroscopic
properties of periodic composite materials shall be outlined based on an integral
equation form of Navier’s equations. For ease of illustration the case of antiplane
shear wave propagation through a fibre reinforced composite(FRC) will be the main
case study. The main resulting advantage is a new explicit analytical formulae, valid
at arbitrary volume fraction, in terms of parameters linkedto specific physical phe-
nomena (e.g. inclusion shape, lattice type).

1 Introduction and example geometry

The integral equation method (IEM), first outlined in [1] forthe antiplane (SH)
wave problem for fibre reinforced composites (FRCs - an example of which is de-
picted in Figure 1) at leading order with respect to both volume fractionφ and non-
dimensional frequencyε, proved advantageous for its validity in non-dilute regimes
and a solution structure where individual terms account forspecific physical features
such as fibre cross section and material properties. In contrast the method of asymp-
totic homogenisation (MAH) lacks this structure, instead hiding the detail within
the cell problem and the numerical schemes used to solve it. This work extends the
IEM beyond the leading order inφ .

Consider identical, unidirectional isotropic fibres, of arbitrary cross-section em-
bedded periodically in an isotropic host material. The lattice geometry is restricted
such that the effective material appears to be, at most, orthotropic on the macroscale.
SH waves are then polarised in thex3 direction and propagate in thex1x2 plane.

D. Joyce e-mail: duncan.joyce@postgrad.manchester.ac.uk, · W. J. Parnell e-mail:
name@email.address,· I. D. Abrahams e-mail: i.d.abrahams@manchester.ac.uk
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x2

x1
0

R

Dst
ρI µI D0

ρ0µ0

Fig. 1: Example FRC geometry with square periodic cell and associated notation. Material proper-
ties areµ (shear modulus) andρ (density).I subscripts referring to inclusions and 0 the host.

In this regimeφ is defined as being per unit span in thex3 direction and non-
dimensional frequency isε = qk0, q being the characteristic length scale of the
periodic cell andk0 the wavenumber of the host.

2 Methodology and results

Scaling lengthsclaes onk0, and takingρI = ρ0, the governing equations for the
displacement in thex3 direction,w(xxx), can be written in integral form as

w(xxx) =−(1−m)
∞

∑
s,t=−∞
s,t∈Z

(

∫

Dst

∇yw(yyy) ·∇yG(yyy− xxx)dyyy

)

,

wherexxx = (x1,x2), G(xxx) is the Green’s function,m = µI/µ0 andDst is the domain
of the (s, t)th fibre. Further manipulation yields a system in displacement gradient

momentsW (k)
i j (rrr) (weighted averages ofw over the fibre cross-section) and shape

factor termsA (k)
i j (rrr). The latter are related to the Hill tensor [2]. By seeking plane

wave solutions (propagating in thex1 direction)W (k)
i j (rrr) = Ŵ k

i j exp(iγ1r1), with γ2
1 =

1/µ∗
1, one ultimately obtains a linear system of the form





















G00(γ1) G01 G02 · · ·
G10(γ1) G11 · · ·

...
...

. . .
H00 H01 · · ·
H10 · · ·

...
. . .
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












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


























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Ŵ (1)
10
...

Ŵ (2)
00
...



































= 000.

In general all matrix coefficientsGi j, Hi j , depend onφ and lattice sums (terms
involving the singular behaviour of derivatives ofG(xxx)).

Asymptotic expansions inφ are then posed for̂W (k)
i j in powers ofφ , and
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1

(µ∗−1
1 −1)

=
a−1

φ
+ a0+ a1φ + . . . (1)

Retaining powers ofφ successively generates a hierarchy of equations, each permit-
ting evaluation ofa j and thusµ∗

1 via (1). µ∗
2 is obtained by rotating the material by

π/2 and using the same wave type.
In the case of fibres of circular cross-section in a square lattice

µ∗
j =

1− (1−m)φ/(1+m)−C2
4 jφ4−C2

8 jφ8+ . . .

1+(1−m)φ/(1+m)−C2
4 jφ4−C2

8 jφ8+ . . .

(2)

whereC4 j andC8 j depend uponm and the fourth and eight order lattice sums re-
spectively. Figure 2 illustrates how the accuracy of the IEMincreases as successive
powers ofφ are added and how it compares with the MAH result.

µ∗
1

r
0.42 0.44 0.46 0.48 0.50

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Fig. 2: Plot of effective longitudinal shear modulus versusradius of circular cylindrical graphite
fibres in epoxy for square lattice, m =18.75, using the MAH (top) and the integral equation method
(IEM) model at orderφ (bottom),φ 4 (dot dashed),φ 8 (dashed)

Other cross sections shall be examined in the presentation,as well as an outline
of how the scheme extends to the acoustic wave problem for composites with three
dimensional inclusions. The scheme can also be adapted to thermal conductivity and
many other applications.
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Acoustic inverse scattering using
topological derivatives

Cédric Bellis, Marc Bonnet, Fioralba Cakoni

Abstract Originally formulated in the context of topology optimization, the concept
of topological derivative has also proved effective as a qualitative inversion tool for
wave-based identification of finite-sized objects. This approach remains however
largely based on a heuristic interpretation of the topological derivative, whereas
most other qualitative approaches to inverse scattering are backed by a mathemati-
cal justification. As an effort towards bridging this gap, this study focuses on a topo-
logical derivative approach applied to the L2-norm of the misfit between far-field
measurements. Either an inhomogeneous medium or a finite number of point-like
scatterers are considered, using either the Born approximation or a full scattering
model. Topological derivative-based imaging functionals are analyzed using a suit-
able factorization of the far-field operator, for each of the considered cases, in order
to characterize their behavior and assess their ability to reconstruct the unknown
scatterer(s). Results include the justification of the usual sign heuristic underpinning
the method for (i) the Born approximation and (ii) full-scattering models limited
to moderately strong scatterers. Semi-analytical and numerical examples are pre-
sented. Within the chosen framework, the topological derivative approach is finally
discussed and compared to other well-known qualitative methods.

1 Inverse scattering by an inhomogeneous medium

The illumination by an incident wave ui of a given trial obstacle D?, characterized by
an assumed contrast q? such that 1+q? > 0 in D? and D? = supp(q?), generates the
corresponding acoustic scattered far-field pattern v∞

? . Therefore, in order to quantify
the discrepancy between D? and an obstacle D to be identified, one may introduce

Cédric Bellis
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Marc Bonnet
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the following type of least-squares cost functional J evaluating the misfit between
some scattered far-field measurements v∞

obs and their trial counterpart v∞
? :

J (D?,q?) :=
∫

S

1
2
|v∞
? (x̂)− v∞

obs(x̂)|2 dSx̂. (1)

One further assumes that the data vobs featured in (1) consists of noise-free measure-
ments on the unit sphere S of the acoustic field scattered by D. The above functional
assumes data from just one incident wave; multiple data may then be taken into
account via finite sums or continuous superposition of functionals, as required.

If the incident field is chosen as a plane wave propagating in the direction θ ∈S,
i.e. ui = h(·,θ) with h(x,θ) = eikx·θ for all x∈Rd , the corresponding far-field pattern
v∞ is denoted A(·,θ). Then, if D is illuminated instead by a continuous superposition
of plane waves, i.e. ui is a Herglotz wave with density g∈L2(S):

ui(x) =
∫

S
h(x,θ)g(θ)dSθ = Hg(x) x ∈ Rd , (2)

the corresponding far-field pattern v∞ is expressed in terms of the far-field operator
F : L2(S)→ L2(S) with kernel A:

v∞(x̂) = Fg(x̂), Fg(x̂) :=
∫

S
A(x̂,θ)g(θ)dSθ . (3)

Sampling methods are commonly investigated under the assumption that full-
aperture far-field data be available for all possible directions of incident plane
waves, i.e. that the kernel A(x̂,θ) of F be known from measurements for all x̂,θ ∈S,
as this data uniquely determines the refraction index q. The cost functional of
type (1) corresponding to this situation, denoted alternatively as JS, is defined by

JS(D?,q?) :=
∫

S

∫

S

1
2
|A?(x̂,θ)−A(x̂,θ)|2 dSx̂ dSθ , (4)

The case of a single incident wave of Herglotz type of the form ui = Hg for some
g∈L2(S), is also of interest, especially when g is selected on the basis of the full
experimental information A(x̂,θ). The corresponding cost functional (1), denoted
by J [g] to emphasize its dependence on the Herglotz density g, is defined by

J [g](D?,q?) :=
∫

S

1
2
|Fg(x̂)−F?g(x̂)|2 dSx̂. (5)

This study is mainly focused on studying the topological derivative of the cost
functionals JS and J [g] as means for the qualitative reconstruction of D.



Acoustic inverse scattering using topological derivatives 3

2 Topological derivative of L2 cost functionals

For a given sampling point z∈Rd , let the trial obstacle be endowed with a uniform
contrast q? and geometrically defined by D? = Dε

z := z+εD , where D ⊂Rd is a
fixed open set containing the origin and with volume measure |D |. The topological
derivative T (z) of J at z is defined through the asymptotic expansion of J as
J (Dε

z ,q?) =
ε→0

J ( /0)+η(ε)T (z)+o(‖v∞
ε,z‖L2(S)) where v∞

ε,z is the far-field pattern

arising from the scattering of ui by Dε
z , η(ε) defines the leading asymptotic behavior

of J as ε → 0 and J ( /0) is the value of J in the absence of any trial obstacle.
The topological derivatives associated with the cost functionals (4) and (5) can

be recast as follows in terms of the far-field operator F associated with the unknown
scatterer (D,q):

T [g](z) =−|D |k2q?Re
[
(g,Φ∞

z )L2(S) (Φ
∞
z ,Fg)L2(S)

]
, (6a)

TS(z) =−|D |k2q? Re
[(

Φ
∞
z ,FΦ

∞
z
)

L2(S)

]
. (6b)

The value T (z) quantifies the sensitivity of the featured cost functional J to
the perturbation of the reference medium induced by the nucleation at z∈Rd of an
infinitesimal obstacle with contrast q?. It is then natural to consider z 7→ T (z) as a
potential obstacle indicator function, as was previously done on several occasions
(see e.g. Fig. 1). The heuristic underlying this usage is as follows: if q? is of the same
sign than q, then the sought object D (or the set thereof) is expected to be located at
the sampling points z at which T attains its most pronounced negative values, i.e.
at which the introduction of a sufficiently small scatterer with a contrast of the same
sign than that of D induces the most pronounced decrease of J . Note that no small-
ness requirement for D is made in this approach, which is referred to hereinafter as
the sign heuristic of the topological derivative. Up to now, this sign heuristic lacks
rigorous justification but is supported by many numerical experiments.

Based on formulations such as (6a) and (6b), this study aims at investigating the
validity of such heuristic and determining conditions under which it has a math-
ematical justification, in the limited framework of the identification of obstacles
characterized by refraction index perturbations using far-field data.

z1

z2eTS eTS

z1

z2

Fig. 1 Identification of two scatterers using topological derivatives.



 



Fourth order energy-preserving locally implicit
discretization for linear wave equations

Juliette Chabassier and Sébastien Imperiale

Abstract Time domain simulation of realistic highly heterogeneous media or
strongly refined geometries can be a computational challenge when using explicit
schemes because they impose a time step restriction that can be extremely penal-
izing. In this work, we present fourth order locally implicit schemes. The domain
of interest is decomposed into several regions where different (explicit or implicit)
fourth order time discretization are used. Whilst implicit schemes tolerate the use
of larger time steps, they can induce greater numerical dispersion. Fourth order ac-
curacy reduces this lack of precision, and makes this family of schemes attractive
compared to other approaches as local time stepping.

1 Continuous system

We want to solve for time t > 0, the system (closed with Neumann homogeneous
boundary conditions):
∂

2
t u0−∇ · c2(x)∇u0 = s0 in Ω0, c2(x)∇u0 ·n0 = λ on Γ , (1a)

∂
2
t u1−∇ · c2(x)∇u1 = s1 in Ω1, c2(x)∇u1 ·n1 =−λ on Γ , (1b)

u0 = u1 on Γ (1c)

in a domain Ω composed by disjoint sets Ω = Ω0∪Ω1 separated by Γ = Ω0∩Ω1.
s0 and s1 are given source terms, and c(x) > c0 > 0 is the inhomogeneous velocity
of the waves. Any solution to (1) satisfies the energy identity dE01

dt =
∫

Ω0
s0 ∂tu0 +∫

Ω1
s1 ∂tu1, where :

Juliette Chabassier
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E01 =
1
2
‖∂tu0‖2

L2(Ω0)
+

1
2
‖∂tu1‖2

L2(Ω1)
+

1
2
‖c∇u0‖2

L2(Ω0)
+

1
2
‖c∇u1‖2

L2(Ω1)
(2)

2 Semi discrete system

We consider spatial meshes of Ω0 and Ω1 upon which are based finite dimensional
finite element spaces: Vh,0 ⊂H1(Ω0), Vh,1 ⊂H1(Ω1) and Γh ⊂H−1/2(Γ ). One have
leeway in the choice of (Vh,0,Vh,1) after which Γh must be chosen so that an inf-sup
type condition is satisfied, see [4, 3, 1]. (Ũh,0,Ũh,1,Λ̃h) is the solution of:

d2
t Mh,0Ũh,0 +Kh,0Ũh,0−tCh,0Λ̃h = Mh,0S̃h,0 (3a)

d2
t Mh,1Ũh,1 +Kh,1Ũh,1 +

tCh,1Λ̃h = Mh,1S̃h,1 (3b)

Ch,0 Ũh,0 =Ch,1 Ũh,1 (3c)

A semi discrete energy identity can be obtained, which satisfies

dE01,h

dt
= Mh,0S̃h,0 ·dtŨh,0 +Mh,1S̃h,1 ·dtŨh,1, where

E01,h =
1
2
‖dtŨh,0‖2

Mh,0
+

1
2
‖dtŨh,1‖2

Mh,1
+

1
2
‖Ũh,0‖2

Kh,0
+

1
2
‖Ũh,1‖2

Kh,1
(4)

where ‖X‖2
M =MX ·X for any nonnegative matrix M. In the following, Ih will denote

the identity matrix.

3 Discrete system

The proposed numerical discretization is based on the following definitions:

D2
∆ tU

n
h :=

(
Un+1

h −2Un
h +Un−1

h

)
/∆ t2, {Uh}n

θ := θ Un+1
h +(1−2θ)Un

h +θ Un−1
h

The consistency analysis of the fourth order family of schemes [2] applied to each
equation of system (3) instigates the following scheme:

Mh,0D2
∆ tU

n
h,0 +Kh,0{Uh,0}n

θ0
− tCh,0Π n

h = Mh,0 Sn
h,0 +∆ t2α0Kh,0M−1

h,0

[
−Kh,0{Uh,0}n

ϕ0
+ tCh,0Π n

h

]
Mh,1D2

∆ tU
n
h,1 +Kh,1{Uh,1}n

θ1
+ tCh,1Π n

h = Mh,1 Sn
h,1 +∆ t2α1Kh,1M−1

h,1

[
−Kh,1{Uh,1}n

ϕ1
− tCh,1Π n

h

]
Ch,0

Un+1
h,0 −Un−1

h,0
2∆ t −Ch,1

Un+1
h,1 −Un−1

h,1
2∆ t = 0

(5)
where αi = θi−1/12. Any solution to (5) satisfies the energy identity:
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Fig. 1 Numerical illustrations in 1D.
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where the discrete energy reads
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where the modified mass matrices M̂h,i are defined by M̂h,i = Ĩ−1
h,i M̃h,i where Ĩh,i =

Ih,i+∆ t2
(
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12
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Kh,i M−1
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(
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4
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12

)(
ϕi− 1

4

)
Kh,iM−1

h,i Kh,i.
The positivity of the energy can be proven under standard CFL condition that depend
on the parameters (θi,ϕi). Despite the non standard form of this energy, stability in
L2-norm can be proved vie non standard estimates. Fig 1(b) shows that the coupling
of second order implicit and explicit schemes only provides second order accuracy
(as expected), while our scheme provides fourth order accuracy. Numerical illustra-
tions in 2D as well as details about stability and consistency of scheme (5) will be
presented.
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Prestressed Nonlinear modes of a N
degree-of-freedom system undergoing a purely
elastic impact law

Stephane JUNCA, Mathias LEGRAND

Abstract Prestressed nonsmooth analysis is investigated for a linear system with
perfect elastic impact. Comparisons and differences with the non stressed case are
explored.

1 Equations and results

Nonlinear modes are used to find invariant manifold in the framework of nonsmooth
analysis. Nonlinear modes appear to be considered as periodic solutions in the pre-
stressed case and not simply continuation of linear modes. We consider a discrete N
degree-of-freedom (dof) system:

Mü+Ku =


0
...
0

R(t)

 ,

uN(t)≤ g,
R(t)≤ 0,
(u2(t)−g)R(t) = 0.

(1)

where M,K,u, u̇ and ü represent the mass matrix, stiffness matrix, displacement,
velocity and acceleration. The quantity g is the distance between the equilibrium
position of mass N and the rigid wall. R(t) is the reaction force of the wall on mass
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N at the wall when impact (or grazing) occurs. The non stressed case g > 0 was
studied in [5] and presented at the last GDR conference in Gregynog (Wales). We
present the prestressed case g ≤ 0. Two very different cases appears

1. g < 0,
2. g = 0.

In the first case, all solutions of the system are nonlinear (with impacts). The non-
linear spectrum is continuous but not issued from the linear invariant manifolds. In
the second case, grazing stressed case g = 0, the spectrum becomes discrete but not
associated with the linear spectrum (of the system without impact). Structures of
these invarint manifolds are presented.
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Wave propagation in nonlinear elastic solids
with slow dynamics

B. Lombard, N. Favrie, C. Payan

Abstract Various solid media exhibit time-dependent physical properties. For in-

stance, the elastic modulus of damaged media (such as concrete) decreases when an

increasing excitation is applied, and then recovers gradually its original value when

the sollicitation is stopped. These relaxation phenomena are investigated here, both

theoretically and numerically.

1 Introduction

Vibrational experiments in rocks or concrete reveal that two different dynamics co-

exist [2, 3]. First, a fast elastic dynamics occurs with a time scale ruled by the fre-

quency of the excitation. Second, a slow dynamics governs the relaxation of the

elastic modulus. Here, a ”soft-ratchet” model [4] is preferred to the phenomenolog-

ical Preisach-Mayergoyz model commonly used. The softening/recovering is related

to the concentration of defects that evolves dynamically with the stress. This relax-

ation mechanisms is coupled to nonlinear elasticity and viscoelasticity. The reader

is refered to [1] for technical details.

In section 2, we introduce the physical model and its basic features: evolution

of defects, nonlinear elasticity, and attenuation. The evolution equations are written

as a first-order system of partial differential equations. In section 3, the numerical

method is introduced, based on a splitting strategy. In section 4, numerical exper-

iments show that the experimental observations performed by Dynamic Acousto-

Elastic Testing (DAET) are qualitatively recovered.
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2 Physical modeling

In 1D, the constitutive law relating the stress σ and the strain ε is the nonlinear

Landau’s model:

σ = E ε

(

1−β ε − δ ε
2
)

, (1)

where E is the Young’s modulus, β and δ are the quadratic and cubic coefficients.

To reproduce the slow dynamics, E is assumed to evolve with a time-dependent

concentration of defects g

E =

(

1−
g

gcr

)

E+
, 0 ≤ g ≤ gcr ≤ 1. (2)

At rest the concentration of defects gσ increases monotonically with the applied

stress σ . For this purpose, a possible law is

gσ =
gcr

2

(

1+ tanh

(

σ −σc

σ

))

. (3)

Out of equilibrium, the real concentration of defects relax towards the static value,

with different time scales:

dg

dt
=

{

− fr (g− gσ) if g > gσ ,

− fd (g− gσ) if g < gσ

, (4)

where the restoration frequency fr and the destruction frequency fd satisfy fr ≪ fd .

Based on the hypothesis of small perturbations, the conservation of momentum

and the relaxation equation (4), the evolution equations write as a non-homogeneous

first-order system of evolution equations:

∂

∂ t
U+

∂

∂x
f(U) = R(U)+S. (5)

3 Numerical modeling

For computational efficiency, the full system (5) is split into two parts: a hyperbolic

step and a relaxation step















∂

∂ t
U+

∂

∂x
f(U) = 0,

∂

∂ t
U = R(U)+S,

(6)

which are solved alternatively with adequate time steps. The hyperbolic step is

solved by a conservative scheme (TVD)
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Un+1
i = Un

i −
∆ t

∆x

(

Fi+1/2 −Fi−1/2

)

, (7)

where ∆x is the fixed space mesh, ∆ t is the variable time step, and Fi±1/2 is the nu-

merical flux function. The relaxation step is solved by a implicit trapezoidal method.

The global algorithm is second-order accurate and is stable under the CFL condition

∆ t = α ∆x
cmax

, with α ≤ 1 and cmax is the greatest eigenvalue of the Jacobian matrix ∂ f
∂U

.

4 Numerical experiments

Wave propagation is simulated on a 0.5 m long bar with physical properties of con-

crete. A punctual source on one edge generates waves up to t = 0.1 s. The elastic

modulus M(t) = ρ c2 is recorded at the middle of the bar. As shown in the left part

of figure 4, it decreases, reaches a plateau, and then recovers gradually its original

value. The evolution of M − ε for increasing forcing amplitudes shows hysteretic

and softening behaviors (right part of figure 4). It reproduces qualitatively the main

features observed experimentally.
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Fig. 1 Left: time evolution of the elastic modulus M(t); the vertical dotted line refers to the ex-

tinction of the source. Right: relative evolution of M in terms of ε , for various forcing amplitudes.
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Asymmetric Acoustic Propagation of Wave
Packets Via the Self-Demodulation Effect

Thibaut Devaux, Vincent Tournat, Olivier Richoux and Vincent Pagneux

Abstract This article presents the experimental characterization of nonreciprocal
elastic wave transmission in a single-mode elastic waveguide. This asymmetric sys-
tem is obtained by coupling a selection layer with a conversion layer: the selec-
tion component is provided by a phononic crystal, while the conversion is achieved
by a nonlinear self-demodulation effect in a 3D unconsolidated granular medium.
A quantitative experimental study indicates asymmetric nature of this rectifier for
wave-packet and extends the future applications of asymmetric systems.

1 Introduction

Over the past decade, the development of asymmetric systems operating on acoustic
waves has proven to be a real challenge given the numerous applications both in
optics and for radio-waves [1]. Research on unidirectional transmission devices for
acoustic and elastic waves, i.e. permitting the wave energy to pass through in one
direction but not the other, has led to applications, such as energy control, energy
harvesting or accumulation, the transistor effect, logic gates and the memory effect
for thermal devices [2],as well as to operations on signals and data, e.g. the optical
device proposed in [3].

In this article, we are proposing the design and operations of an elastic wave
rectifier based on the nonlinear self-demodulation effect. The rectifier is to operate
with elastic waves in solids without requiring any external energy.
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2 Architecture principle and experimental results

The schematic principle and a picture of the rectifier are shown in Fig. 1. The se-
lection layer is a periodic medium, i.e. a phononic crystal (PC), composed of 9 al-
ternating layers of aluminum and lucite. The conversion is performed by a strongly
nonlinear granular medium (NLM) through a nonlinear self-demodulation effect.

Fig. 1 (a) Schematics of the rectifier for the ”+” direction; (b) Picture of the rectifier core, com-
posed of a multilayer PC connected to a granular layer; and (c) Schematics for the ”−” direction.

Let us specify the ”−” direction for the case where the emitted wave, launched
from the right side, first meets the PC, as shown in Fig. 1 (c). In this direction, an
amplitude-modulated wave first excites the PC, which has been designed to exhibit
a passband below a cutoff frequency of fc ' 35kHz and a band gap above. If the
excitation signal frequencies exceed fc, then: the PC does not transmit the signal,
no acoustic energy is conveyed to the granular medium, and no signal passes through
the system.

In contrast, in the ”+” direction, see Fig. 1(a), the wave, launched from the left
side, first excites the nonlinear granular medium, which converts part of the initial
acoustic energy to lower frequencies through the self-demodulation effect.At the
interface between the granular medium and the multilayer PC, the initial signal and
the nonlinearly self-demodulated signal are both present. The PC then filters out
frequencies above fc while still transmitting the frequency components below fc:
the signal initially emitted is reflected, but the self-demodulated signal located in a
passband is transmitted.

To operate this acoustic rectifier, a wave packet with a carrier frequency f0 = 45
kHz and characteristic Gaussian envelope duration tg = 1/ fg = 0.1 ms is excited in
the emission delay line.
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Fig. 2 Particle velocity V measured by the laser vibrometer in the middle of the delay lines. (a)
and (b) ”+” direction configuration. (c) and (d) ”-” direction configuration.

In the ”+” direction, i.e. Fig. 2(a,b), the excited wave packet first meets the non-
linear medium and is partially demodulated; its initial spectrum components are
then reflected by the PC, Fig. 2(a). The self-demodulated part is transmitted through
the PC and reaches the transmission delay line, as observed in Fig. 2(b). In the ”-”
direction, Fig. 2(c,d), the excited wave packet first meets the PC and is totally re-
flected (see the incident and reflected signals in Fig. 2(c)). In the transmission delay
line, Fig. 2(d), no detectable signal is visible. The asymmetric nature of the rectifier
has thus been demonstrated here in the time domain for pulsed signals.

3 Conclusion

In conclusion, a new asymmetric wave transmitter architecture has been proposed
by utilizing physical conversion and selection mechanisms. The nonlinear self-
demodulation effect induced by unconsolidated granular media has been introduced
for the conversion process, while the selection procedure has been completed with
a phononic crystal. Experimental results indicate asymmetric nature of the rectifier
for pulsed signals.
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Ultrasound propagation through Kelvin-
Helmholtz instabilities 

Nicolas MASSACRET, Joseph MOYSAN, Marie-Aude PLOIX, Jean-Philippe 
JEANNOT 

 
 
 

 
Abstract In the frame of research on Sodium cooled Fast nuclear Reactor 

(SFR), CEA aims to develop an innovative instrumentation, specific to these reac-
tors. The present work is related to the acoustic measurement in the liquid sodium 
near the outlet of the reactor's core assemblies. This instrumentation involves the 
propagation of ultrasonic waves in liquid sodium, thermally inhomogeneous and 
turbulent. Environment may cause deviations of the acoustic beam that must be 
understood to be predicted and quantified to consider ultrasound as a reliable 
measure means in a core of SFR reactor.  

The works presented here are intended to observe the influence of a turbulent 
and thermally homogeneous fluid on the propagation of ultrasound for comparison 
with numerical computation. For this study, an experiment named IKHAR has 
been established. This experiment allows us to study the propagation of ultrasound 
through a flow of water containing Kelvin-Helmholtz instabilities. 

These instabilities are a delicate hydraulic phenomenon to develop, but allows 
us to obtain an inhomogeneous and reproducible velocity field. Acoustic 
measurements, performed with phased array transducer, allow the observation of 
very thin time of flight variations on localized portions of the flow. 
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1 Acoustic instrumentation in liquid sodium 

Sodium-cooled fast reactors have been chosen by France as the reference op-
tion in the framework of the Generation IV international forum. For this kind of 
reactor, it is necessary to develop a specific instrumentation, compatible with 
sodium used as coolant, and to achieve the objectives of the Generation IV forum, 
particularly in terms of reliability. 

In the reactor zone situated between the outlet of the fuel assemblies and the 
upper core structure, some of instrumental needs include thermometry and 
telemetry. Thermometry is used to determine the temperature of sodium at the 
assemblies’ outlet. Telemetry is used to detect movements of these assemblies. 
Ultrasounds are well adapted to these measures because they propagate 
themselves rapidly in the liquid sodium, being weakly attenuated. Furthermore, 
these measurements can be performed far from the measurement area, without 
interaction between the ultrasonic transducer and the sodium flow. 

However, in this area, the sodium flow is turbulent and present significant 
temperature variations. Depending on the orientation of the acoustic beam, these 
inhomogeneities may cause deviations and changes in the ultrasonic time of flight 
which could interfere with measurements. 

Some numerical code, as AcRaliS [2] or CIVA [1], have been developed to 
compute the deviation and the delay of ultrasound propagation in such 
environments. Some experiments in static thermal inhomogeneous medium have 
been already done to verify a part of the model used in AcRaliS simulation code 
[3]. However in a turbulent medium, the chaotic nature of the flow makes 
complex the experimental verification of the model. 

To deal with this issue, Kelvin-Helmholtz instabilities are a solution because 
this kind of instabilities, composed of eddies, are monitorable. 
 

2 Kelvin-Helmholtz instabilities 

Kelvin-Helmholtz instabilities are a kind of turbulence that develops in the 
mixing layer of two fluid flows moving in the same direction but at different 
speeds. The mixing layer is a very unstable area, and small perturbations in the 
flow are sufficient to cause the creation of eddies. These eddies are of small size at 
the beginning of the mixing layer, and then pairing themselves and grow gradu-
ally. Depending on fluid velocity and the observed area of the mixing layer, it is 
possible to generate varying intensities instabilities. 

The disturbances that create these eddies can be intrinsic to the experimental 
design (geometry of the fluid pipe, random fluctuations in water speed), or peri-
odically caused by the experimenter (creating pressures or flow speed controlled 
variations). 
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3 IKHAR experimental device 

The experimental bench named IKHAR (Instabilities of Kelvin-Helmholtz for 
Acoustics Research) is a device that generates Kelvin-Helmholtz instabilities in 
water flows that can reach speeds of 3m.s-1. On both sides of the test section pipe, 
are arranged two phased array probes of 64 elements that perform the time of 
flight and deviations measurements. This use of a pair of phased array allows us to 
acquire acoustic signals on very small surfaces, with a width inferior to the milli-
meter, and thus explore thin portions of the flow. 
Then these results will be compared with numerical simulations where ultrasounds 
are propagated through a similar thermo-hydraulic medium. The thermo-hydraulic 
medium used for these calculations is also derived from numerical simulations 
(computational fluid dynamics simulations) run with Comsol. 

4 First results 

Even if the generation of instabilities created by IKHAR bench is not yet periodic, 
it is possible to measure the ultrasound time of flight variation through some well-
formed eddies. These results show the evolution of flight time during the passage 
of one of these eddies. Evolutions are related to the size and vorticity of the eddy. 
The following figure show the result for one instability moving between the two 
transducer, and created with two flows of 0.4 m.s-1 and 2 m.s-1 composing the mix-
ing layer. 
 

 
Figure 1. Acoustic time of flight variation for eddies moving between the two transducers 

at 1.2 m.s-1. 
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Then computational fluid dynamics simulations have been realized with Comsol 
to generate a flow with instabilities of Kelvin-Helmholtz, and acoustics rays have 
been propagated through these thermo-hydraulics medium with AcRaLiS code. 
 
These instabilities and one of the acoustics rays appear on the following figure. 

 
Figure 2. Computational Fluid Dynamic simulation of instabilities of Kelvin-Helmholtz 

(Run with Comsol). 

 
The first results are encouraging, with time of flight variations of an order of 10 
ns, as in the experiment. The following figure present the time of flight  
 

 
Figure 3. Simulation of the acoustic time of flight evolution through two instabilities (Run 

with AcRaLiS). 
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5 Conclusion 

The use of phased array transducers allows us to measure small time of flight 
variations of ultrasounds through eddies, with a good spatial resolution thanks to 
the small width of each element. It is thus possible to characterize the size and the 
vorticity of each eddy. Moreover the first comparison with numerical simulations 
give us encouraging results. 
The next step of this work is now to make periodic the generation of the Kelvin-
Helmholtz eddies, introducing periodic disturbances in the flow or modifying 
some parts of the IKHAR geometry. This will improve the representativeness of 
CFD simulations and so improve the quality of the comparison between acoustic 
simulation and acoustic measurement. 
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2D and 3D Dispersion Loci of Guided Waves in
Viscoelastic Composites of General Anisotropy

F. Hernando Quintanilla; Z. Fan; M.J.S. Lowe; R. V. Craster

Abstract Guided Waves are an important tool in many Non-destructive Evaluation
(NDE) applications. The most realistic setting for many applications is achieved
when one considers viscoelastic solids with material damping rather than their per-
fectly elastic idealizations.
In this conference, a Pseudospectral Collocation Method (PSCM) will be presented
for tackling this more general family of problems involving viscoelastic materials.
It will be shown that the PSCM also provides the full spectrum in three dimensions
for elastic as well as viscoelastic problems.
Once the solution points using any method have been found, the challenge is to
identify the modes to which they belong. Parity and Coupling properties of guided
wave solutions will be discussed and how they can be used to identify with certainty
the modes belonging to the point solutions.

1 Introduction

Non-destructive evaluation applications often use guided waves in order to inspect
structures and the dispersion curves of these waves are crucial for understanding
their physical properties and select the appropriate mode best suited to the goal of
the investigation. The usage of dispersion curves for NDE is well established as the
abundant literature and studies on the subject reflect, [1–10].
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The majority of the references above assume the materials to be perfectly elastic
but a more realistic approach to guided waves is to consider viscoelastic materials
where attenuation due to material damping is present. Attenuation is accounted for
by the imaginary part of the wavenumber and hence complex wavenumbers must be
found when viscoelastic materials are considered.

2 Pseudospectral Collocation Method for Viscoelastic Materials
and Companion Matrix

The main idea behind the PSCM is that one converts a set of Partial Differential
Equations (PDEs) into a matrix eigenvalue problem. The solution to the PDE are
the eigenvalues and eigenvectors. The reader is referred to the papers by Adamou et
al. [9] and Hernando et al. [10] for a detailed account of this method and its imple-
mentation for elastic guided wave problems. After the appropriate manipulations,
one can rewrite the equations of motion for elastic waves in anisotropic materials in
the following form in order to make the wavenumber dependence explicit:(

Q2 k2 +Q1 k+Q0(ω
2)
)

U = 0 (1)

For viscoelastic materials, the modes for a given frequency are given by the com-
plex wavenumber whose imaginary part accounts for the attenuation of the mode.
However, as can be seen in Eq. (1), the equation is not linear in the wavenumber and
hence one needs to linearize it in order to obtain a general eigenvalue form.
The linearization scheme chosen is known as the Companion Matrix Method, there
are other options but this scheme has proved to be good for our purposes, see Bridges
and Morris for further details [11]. After some manipulations one arrives at the fol-
lowing desired form for the problem in Eq. (1):

M1

(
Û
U

)
= k M2

(
Û
U

)
(2)

where the wavenumber k now appears as the eigenvalue and the two matrices M1
and M2 are defined in terms of the Qi. This equation is readily solved for a given
real frequency ω by any of the standard libraries available for eigenvalue problems.
Further details can be found in Hernando et al. [12].
This is illustrated in the example below, figures 1 and 2 show the dispersion curves
and attenuation respectively for a multilayer flat system composed of three Triclinic
and Orthorhombic viscoelastic plates. Results given by the PSCM are shown in blue
circles and the results obtained with a (Semi-Analytical Finite Element) SAFE [13]
simulation are given in red asterisks. As can be seen, the agreement is excellent.
The reader is referred to the paper by Hernando et al. [12] for further details and
examples.
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Fig. 1 Phase velocity for the 3-layered system with hysteretic-type damping: viscoelastic 8 mm
thick triclinic layer (top), viscoelastic 5 mm thick orthorhombic layer (middle) and elastic 3 mm
thick triclinic layer (bottom). Note that the total thickness has been used for the x axis in the figure.
Solutions are plotted as follows: PSCM (blue circles) vs. SAFE (red asterisks).

Fig. 2 Attenuation curves for the 3-layered system of Figure 1.

3 Dispersion Loci in 3D

The scheme just described provides much more information than the graphs just
shown and by appropriately sorting the solution three-dimensional dispersion curves
can be easily obtained for elastic as well as viscoelastic materials. Examples of this
will be presented in the conference.
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4 Parity and Coupling Properties of guided wave solutions

A discussion about the parity and coupling properties of guided wave solutions will
be presented and how these can be exploited in order to avoid the problem of mode
crossings and attain a robust approach to tracing dispersion curves. This will also be
illustrated with several examples.
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Guided Wave Vibration Techniques Applied to
Hidden Tamper Detection

Robert Davey, David Abrahams, Raphael Assier and Rich Hewitt

Abstract We consider the use of guided waves in the testing of plates with deli-
brately hidden tampering. We briefly cover the use and applicability of thin plate
theory in this context and discuss its limitation when modelling the tamper itself.
We go on to study Rayleigh-Lamb waves and how they reflect at a boundary, dis-
cussing a variety of methods to solve this problem.

1 Introduction

We have been motivated by the problem of leaving important items with untrust-
worthy people. We wish to be sure that our important item has not been tampered
with and in order to do this we wish to build a container which we can verify has
not been accessed. Our work has been looking at the use of guided waves in order to
perform this verification. This type of testing has been identified as possibly being
useful in testing that the large areas of plates have not been breached and resealed.

2 Experimental Work

Some experimental work has been done on the use of guided waves in this area. The
first work that was performed was simply exciting waves and seeing the response on
a laser vibrometer. The laser vibrometer picks up the speed of the plate in the x,y,z
directions seperately. This method proved very effective at detecting a tamper by eye
due to mode conversion. Mode conversion is easy to detect as in-plane waves travel
faster than out-of-plane waves. In fact when an out-of-plane mode is generated a
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response in the out-of-plane direction is present where there should only be small
vibrations from in-plane waves.

Fig. 1 A sample output from
the laser virbrometer. This
output shows the out-of-plane
response soon after a wave
has been excited in the plate.
The in-plane response can be
similarly isolated.

3 Kirchhoff Theory

We know that containers of interest are composed of thin metal plates, therefore
we can use a thin plate theory to approximately describe their behaviour. We have
studied the use of Kirchhoff theory in this context and found that the predictions in
the bulk of the plate are accurate. However the mode conversion from in-plane to
out-of-plane waves at tampered boundaries is not predicted.

We wish to find some appropriate boundary conditions for the Kirchhoff formu-
lation. In order to do this we seek to solve the problem of Lamb waves scattering
from a tamper boundary. We will then look at depth averaging this behaviour to find
a sensible boundary condition in the Kirchhoff theory.

4 Reflection at the Boundaries

To solve the more complicated 3D elastic problem we will be looking at the re-
flection of Lamb waves. These are waves that exist in plates with zero stress on
the top and bottom. There always exists a symmetric Lamb wave corresponding
to longitudinal in-plane wave and an antisymmetric Lamb wave corresponding to
out-of-plane wave. In the case of interest these will be the only propagating Lamb
waves, although there will always exist infinitely many evanescent modes.

We wish to solve the problem of Lamb waves scattering from a boundary. We
have started by looking at the configuration shown in figure 2 in the hope that this
will aid us in more complicated examples. An important thing to note about this
example is that we have a fully symmetric problem and hence we expect symmetric
lamb waves to generate only a symmetric response, therefore we do not expect this
example to provide us with mode conversion.
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The non-depth-averaged problem of reflection of a Lamb wave is not trivial to
solve. From Williams work [2] we know that the corners generate irregular terms
that cause problems in simplistic mode matching methods. We have tried to solve
this problem in two different ways in order to try and resolve these difficulties.

Fig. 2 The physical configu-
ration of the problem we wish
to solve. The main difficulty
in this problem is the irregular
form of the terms orginating
from the corners as discussed
in Williams [2].

Incoming Wave

Scattered Wave

x

y

Stress Free Surface

We have looked at the method of projection to solve this problem, as described
in Gregory and Gladwell [1]. This method attempts to deal with the irregular terms
caused by the corner singularity from the outset and mode match only on the regular
terms in order to improve convergence.

This method generates a series approximation of the displacements on the bound-
ary as

UN ≈ h−
N

∑
n=1
n 6=a

CnS∗n, (1)

defined up to a constant multiple. The choice of h is an attempt at dealing with
the corner singularities but, as presented the paper does not take into account its
full form as given by Williams [2]. Further to this a second series approximation is
needed to find an expansion in terms of Lamb waves. These problems have resulted
in poor convergence in the stress at the free boundaries, although useful information
about the reflected modes can be gathered.

5 Further Work

We wish to use our understanding of this problem to find solutions to asymmetric se-
tups. Once we have understood how the mode conversion happens, we wish to then
depth average the important properties to give us boundary conditions in Kirchhoff
theory.
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Title:!!
Energy transport in one-dimensional disordered granular solids!!!
Abstract:!!
Granular materials are collections of macroscopic grains that interact via dissipative and nonlinear 
forces. These materials are of substantial importance in many industrial and natural processes  
while  at  the  same  time  they  offer a  perfect  test  bed  for  new insights  into problems  in 
condensed-matter physics and  materials  science. Despite their  seeming  simplicity,  granular  
matter  behaves  quite  differently  from  the  other familiar  forms of  matter and their rich and 
complex dynamic behavior still present a major challenge in physics.  !!
In this talk, I will present some recent results about the energy transport in one-dimensional 
disordered granular solids [1]. First, I will review some results about the existence and stability of 
nonlinear defect modes [2] in granular chains with one or two defects and how these modes can be 
used for the design of nonreciprocal acoustic devices [3]. Then, we will turn our attention to a 
sufficiently strong disordered granular chain. By increasing the initial excitation amplitudes I will 
show you that we are able to identify three distinct dynamical regimes with different energy 
transport properties: a near linear, a weakly nonlinear and a highly nonlinear regime. In the weakly 
nonlinear regime, we find that energy, initially trapped in a localized region, can be eventually 
detrapped and this has a direct influence on the fluctuations of the energy spreading. In the 
strongly nonlinear regime, we demonstrate that the energy is almost ballistically transported 
through shock-like excitations.!!
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Periodic solutions with one sticking phase per
period

Huong LE THI, Stephane JUNCA, Mathias LEGRAND

Abstract Periodic motions with sticking phase of a two degree-of-freedom vibro-
impact spring mass model with perfect elastic impact and without source term are
motivated and presented.

1 Equations and results

Periodic solutions with sticking phase have been observed in some continuous mod-
els of vibro-impact systems ([5]). To study this complex phenomenon, we consider
a discrete n degree-of-freedom (dof) system. Since the sticking phase does not occur
for a one dof system with perfect elastic impact and without source term, we con-
sider the two dof vibro-impact system and find that it is the simplest model in which
sticking phase occurs. In particular, we study the existence of periodic solutions
with sticking phase of a model consisting of two springs and two masses:

Mü+Ku =

[
0

R(t)

]
,

u(0) = u0, u̇(0) = u̇0,
u2(t)≤ g,
R(t)≤ 0, (u2(t)−g)R(t) = 0 ∀t,

(1)
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where

M =

[
m1 0
0 m2

]
, K =

[
k1 + k2 −k2
−k2 k2

]
, u(t) =

[
u1(t)
u2(t)

]
,

m j,k j,u j, u̇ j and ü j represent the mass, stiffness, displacement, velocity and accel-
eration of the mass j, j = 1,2, respectively. The quantity g is the distance between
the equilibrium position of mass 2 and the rigid wall. R(t) is the reaction force of
the wall on mass 2 at the time of impact.

A necessary condition for a sticking phase to occur is the existence of grazing
contact (u̇−2 (t) = 0), i.e. impact with zero velocity. Moreover, sticking phase appears
when the displacement of mass 1 reaches g with the positive velocity and it happens
as long as the position of the mass 1 still greater than g ([4]). All the periodic motions
with one sticking phase per period are computed. The key unknown parameter is
the duration s of free flight phase which appears as a root of a nonlinear equation.
When s is known (numerical computation), the period, the sticking time and the
associated solution are explicitly derived. A number of numerical experiments of 1
spp solutions are also explored and a relationship between periodic solution with
1spp and periodic solution with 1 impact per period [6] is established.
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Ultrasonic Particle Separation

Georgia Lynott and Dr Rich Hewitt ( MSc Supervisor)

Abstract We seek to provide an introduction to the nonlinear acoustics govern-
ing the manipulation of objects using ultrasound. Acoustic streaming is briefly dis-
cussed, before focusing on the acoustic radiation pressure exerted on a free, rigid
sphere in a plane wave. The results of King (1934) for the free sphere are recovered
via an alternate approach, which is more easily extended to different geometries.
The implications for acoustic levitation are briefly discussed.

1 Introduction

The use of ultrasonic waves to manipulate small particles and fluid droplets has gar-
nered much interest in scientific circles, with potential applications, for example, in
blood filtration (Petersson et al. (2004)) and contactless handling of samples (Ochiai
et al. (2014)). Understanding the mathematics behind these phenomena, however,
requires us to take account of the nonlinear effects of the ultrasonic field; the acous-
tic streaming in the fluid itself, and the acoustic radiation pressure on a particle in
the field.

2 Acoustic Streaming

An ultrasonic transducer placed in a fluid will create a steady, non-zero mean flow
in the fluid, a phenomenon known as acoustic streaming (or ‘quartz wind’). Similar
steady flows may arise due to the presence of an oscillating boundary, even in an
inviscid or incompressible fluid - a full review is given by Riley (2001). Such flows
are governed by the streaming Reynolds number, which we will illustrate briefly
with an example studied by Secomb (1978).

Consider a fluid-filled channel of width 2a0 with oscillating walls, as shown
in Fig. 1. We assume the walls of the channel undergo small sinusoidal pertur-

Fig. 1 Channel of half width a0 with oscillating boundaries y =±a(t).

bations of amplitude ∆ , and angular frequency ω , so that a(t) = a0 +∆ cos(ωt).
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Non-dimensionalisation of the Navier-Stokes equations gives rise to the Womersley
constant α = a0

√
ω/ν , where ν is the kinematic viscosity of the fluid. This con-

stant can be thought of as a measure for the unsteadiness in the system. We also
define the ratio ε = ∆/a0, which then allows us to express the streaming Reynolds
number as Rs = α2ε2. As shown by Secomb, Rs is the ratio of the second order vis-
cous term to the neglected fourth order convection term. To see the relation between
the streaming Reynolds number Rs and the more usual Reynolds number, we note
that

Rs = ε
2
α

2 =
∆ 2

a2
0
·a2

0
ω

ν
=

∆ · (∆ω)

ν
,

so we have the familiar “length× speed/viscosity” definition of the Reynolds num-
ber. For cases where Rs < 1, the streaming flow will be insignificant in size com-
pared to the other forces at play. In the case of the applications mentioned in the
introduction, a typical transducer has an amplitude of ∆ ∼ 1− 10 µm, and a fre-
quency less than 1MHz, so we expect values of Rs < 1. For cases when Rs > 1, the
acoustic streaming will play a non-negligible role in the motion of any particles in
the field.

3 Acoustic Radiation Pressure

Expressions for the acoustic radiation force exerted on a rigid sphere by plane pro-
gressive and standing waves in a perfect fluid were first derived by King (1934).
King’s approach, which uses a moving origin embedded in the oscillating sphere,
simplifies calculations in some respects, but causes difficulties when we wish to ex-
tend the problem to include, say, multiple spheres or a nearby boundary. We there-
fore attempt to recover the results of King via a more modern approach that fixes
the origin, and is more amenable to such extensions.

Rigid free sphere in a plane wave

Consider a rigid, incompressible sphere of radius a and density ρs in a fluid of
density ρ0 insonified by a plane progressive wave of amplitude A and wavenumber k.
Then the movement of sphere ζ (t) may be though of at first order as a displacement
from some ‘mean’, i.e. leading order, location, by a small perturbation ε due to the
oscillating first order pressure, so that

ζ (t) = εζ1(t)+O(ε2),

where the displacement at first order is of the form ζ1 = De−iωt , where D is to be
determined. The force on the sphere can then be expressed as:

F =−
∫

S(t)
(ε p1 + ε

2 p2 +O(ε3))ndS.

Considering the integral of the first order pressure p1, we have at first order in ε the
integral over the mean, stationary surface S0. Since p1 and the sphere both oscillate,
the integral over the moving surface contributes, at second order in ε , a time inde-
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pendent term ΓΓΓ(0) and a second harmonic term ΓΓΓ(2). The integral of the second order
pressure p2 over the mean surface also contributes to the second order steady terms.
The force integral can then be expressed over the stationary surface, S0, as

F =−ε

∫
S0

p1ndS− ε
2
(

ΓΓΓ
(0)+ΓΓΓ

(2)e−2iωt +
∫

S0

p2ndS
)
+O(ε3),

which after some rearranging reduces to the formula found in King for steady, sec-
ond order force F2

0 , or acoustic radiation force

F(0)
2 = 2πρ0A2

δ
6

(
1+ 2

9 (1−P)2

(2+P)2

)
,

where δ = ka is the usual ratio of wavelength to sphere radius and P = ρ0
ρs

is the
density ratio.

Free sphere in a standing wave

For a sphere at a distance h from the origin, i.e. the location of the source, the
acoustic radiation force derived by King (p227, eq. 76) in the long wavelength limit
δ � 1 is

F(0)
2 = πρ0A2 sin(2kh)δ 3

(
1+ 2

3 (1−P)
)

2+P
. (1)

It is important to note that the force is much larger- O(δ 3)- for a standing wave, than
for a travelling of the same frequency and amplitude, where the force is only O(δ 6).
We also note that the acceleration is independent of radius of the sphere, provided
we remain in the limit δ = ka � 1. The key parameter is the density ratio, P = ρ0

ρs
. If

we consider acoustic levitation, where particles are suspended in a vertical standing
wave between transducer and reflector, we can use (1) to find the maximum particle
density which may be levitated and predict the location of the equilibrium points
which the particles will move towards.
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Finite Element simulation of wave propagation 
in highly scattering materials. 
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Abstract Polycrystalline materials are challenging for ultrasonic Non-destructive 
Evaluation (NDE). Unlike acoustically transparent media, the microstructure of 
some metals which we wish to inspect is sufficiently coarse such that it causes 
scattering of the propagating waves. A consequent increase in attenuation and co-
herent noise both hinder flaw detection, making inspection difficult.  
 
Until recently, the task of numerically modelling the wave scattering physics had 
been equally challenging. However, recent advances in computer technology and 
software have enabled step improvements, in particular the possibility of running 
realistically large Finite Element simulations1-4. The authors have adopted this ap-
proach to simulate elastic wave propagation in both 2D and 3D, for a typical poly-
crystalline material favoured by the power industry. The models use the Voronoi 
tesselations5 representation to discretise granular material with defined statistics of 
grain size and orientations of the anisotropic stiffness properties within each grain. 
The implementation is on a GPU platform, using the POGO6 time domain Finite 
Element code. The models have been used to predict scattering-induced attenua-
tion, wave speed, and back-scatter noise7, 8.   
 
The presentation will show the implementation, validation and example uses of 
the model. The implementation includes an important focus on defining the spatial 
discretisation and achieving convergence.  The validation includes comparison of 
the predictions of attenuation and wave speed by the 2D and 3D models with those 
of the Unified Theory9 across a range of scattering regimes.  Examples of use of 
the model have illustrated the difference between representations in three dimen-
sions compared with those in two dimensions, and have provided useful insights 
into the ultrasonic array imaging of defects within these difficult materials. 
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